

Dissertação

Estudo do desempenho de ferramentas de açorápido na usinagem criogênica do aço ABNT 1020.

Roberto França de Oliveira

Natal, julho de 2015

UFRN - CT - NUPEG - Campus Universitário - CEP 59.072-970 - Natal/RN - Brasil Fone/Fax: +55 (84) 3215-3773 - www.nupeg.ufrn.br - prhanp14@nupeg.ufrn.br

ROBERTO FRANÇA DE OLIVEIRA

ESTUDO DO DESEMPENHO DE FERRAMENTAS DE AÇO-RÁPIDO NA USINAGEM CRIOGÊNICA DO AÇO ABNT 1020

Dissertação apresentada ao Programa de Pósgraduação em Engenharia Mecânica da Universidade Federal do Rio Grande do Norte como requisito para obtenção do título de Mestre em Engenharia Mecânica.

Orientação: Prof. Dr. Anderson Clayton Alves de Melo

NATAL, julho de 2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

ATA Nº 372

Aos vinte e oito dias do mês de Novembro do ano de dois mil e quatorze, às 08:30 horas, no Auditório do Laboratório de Manufatura -NTI/UFRN, instalou-se a banca examinadora de dissertação de mestrado do(a) aluno(a) ROBERTO FRANÇA DE OLIVEIRA. A banca examinadora foi composta pelos professores Dr. Flávio José da Silva, UFPE, examinador externo, Dr. Wanderson Santana da Silva, UFRN, examinador interno, e Dr. Anderson Clayton Alves de Melo, UFRN, orientador. Deu-se início a abertura dos trabalhos, por parte do professor Dr. Anderson Clayton Alves de Melo, que, após apresentar os membros da banca examinadora, solicitou a(o) candidato(a) que iniciasse a apresentação da dissertação, intitulada "ESTUDO DO DESEMPENHO DE FERRAMENTAS DE AÇO-RÁPIDO NA USINAGEM COM RESFRIAMENTO CRIOGÊNICO DIRETO POR SPRAV", marcando um tempo de quarenta minutos para a apresentação. Concluída a exposição, Dr. Anderson Clayton Al ves de Melo, orientador, passou a palavra ao examinador externo, Dr. Flávio José da Silva, para arguir o(a) candidato(a) e, em seguida, ao examinador interno, Dr. Wanderson Santana da Silva, para que fizesse o mesmo; após o que fez suas considerações sobre o trabalho em julgamento; tendo sido <u>APPOVADO</u> o(a) candidato(a), conforme as normas vigentes na Universidade Federal do Rio Grande do Norte. A versão final da dissertação deverá ser entregue ao PPGEM, no prazo de <u>60</u> dias; contendo as modificações sugeridas pela banca examinadora e constante na folha de correção anexa. Conforme o Artigo 35 do Regimento Interno do PPGEM, o(a) candidato(a) não terá o título se não cumprir as exigências acima.

Dr. Elávig José da Silva, UFPE Examinador Externo

Dr. Wanderson Santana da Silva UFRN Examinador Interno

Vesse Anderson Clayton Alves de Melo, UFRN Dr.

Orientador

trango d ROBERTO FRANÇA DE OLI VEIRA Mestrando

Campus Universitário - Lagoa Nova - Natal/RN - CEP: 59072 - 970 Telefax: (84) 3215-3768 • ppgem@ct.ufrn.br

Ainda que eu andasse pelo vale da sombra da morte, não temeria mal algum, porque tu estás comigo; a tua vara e o teu cajado me consolam. Salmo 23:4

Dedico este trabalho à minha esposa, à minha irmã e à minha mãe. Sem vocês nada disso teria sido realizado. Ao professor orientador, pela ajuda inestimável e conhecimento transmitido e a todos aqueles que contribuíram de alguma forma. Sintam-se homenageados nessas poucas linhas.

AGRADECIMENTOS

A Deus em primeiro lugar.

À minha esposa Janaina Vitória de Souza Soares Oliveira, que esteve em todos esses momentos me dando apoio e ao meu filho Samuel Lucas Soares Oliveira.

À minha mãe Wilma França de Oliveira, ao meu pai José Justino Camelo de Oliveira e aos meus Irmãos Cátia França de Oliveira e Nilton França de Oliveira e seus familiares.

Ao professor Dr. Anderson Clayton Alves de Melo, por ter sido um grande amigo nessa pesquisa.

Ao Programa de Recursos Humanos 14 (PRH14 – UFRN), À Petrobras e à ANP (Agência Nacional do Petróleo, Gás Natural, Biocombustíveis e Energias Renováveis), pelo suporte financeiro.

Ao professor Esp. José Romualdo Dantas Vidal e ao Dr. Osvaldo Chiavone Filho do PRH14 – UFRN.

À secretária do PRH14 – UFRN, Sra. Maria Brunet, pela disposição em ajudar e oferecer soluções às demandas necessárias.

À UFRN, por ser minha segunda casa desde a graduação.

À FUNPEC (Fundação Norte-Rio-Grandense de Pesquisa e Cultura), principalmente a Sra. Lucyanna Carvalho do Nascimento, pelo auxílio na aquisição de alguns materiais e equipamentos usados nesta pesquisa.

Ao Programa de Pós-graduação em Engenharia Mecânica, principalmente ao secretário Sr. Luiz Henrique Pereira Gadelha de Amorim.

Aos professores Dr. João Telésforo Nóbrega de Medeiros, Dr. Adilson José de Oliveira, Dr. Ulisses Borges Souto e Dra. Salete Martins Alves, pelas críticas e ensinamentos valiosos.

Ao Laboratório de Metrologia da UFRN, pelos equipamentos e materiais cedidos e ao apoio dos professores Me. Luiz Pedro de Araújo e ao Dr. Walter Link e aos funcionários Srs. Alex Araújo de Souza, Luiz Henrique Pinheiro de Lima, Raifi Costa Ramalho, Ailton Floriano da Silva e Alan César dos Santos Dantas. Ao Laboratório de Caracterização de Materiais da UFRN, na pessoa do Sr. José Roberto de Melo Filho.

Aos alunos Danilo Fagundes Pascoal de Morais e Gustavo de Lucena Lira, bolsistas do Programa PRH14 – UFRN, e ao Me. Igor Lopes de Andrade, pela ajuda na manutenção do torno usado nesta pesquisa e por diversas outras demandas.

Ao professor Dr. Carlos Chesman de Araújo Feitosa, do Departamento de Física Teórica e Experimental da UFRN, pela gentileza e disponibilidade em fornecer o nitrogênio líquido usado na pesquisa.

Ao servidor Sr. Carlos dos Anjos do Laboratório de Criogenia da UFRN, pela atenção.

Aos Professores Me. Cláudio Romero Rodrigues de Almeida, Dr. Maurício Roberto Bomio Delmonte, Me. Roberto Cavalcante, Dr. Sérgio Rodrigues Barra e Dr. Wanderson Santana da Silva, pela gentileza em ajudar a resolver diversas demandas.

SUMÁRIO

1. INTRODUÇÃO	1
2. REVISÃO BIBLIOGRÁFICA	4
2.1. AÇO RÁPIDO	4
• Pré-resfriamento criogênico da peça	13
Resfriamento criogênico indireto	14
• Resfriamento criogênico direto por jato ou spray	17
• Tratamento criogênico da ferramenta de corte	19
3. MATERIAIS E MÉTODOS	21
3.1. Corpo de Prova	22
3.2. Ferramentas de corte	25
3.3 Sistema de Aplicação de LN ₂	
3.4. Testes de usinagem	
4. RESULTADOS E DISCUSSÕES	42
4.1. Avaliação do perfil usinado	
4.2. Avaliação do desgaste de flanco (VB) das ferramentas testadas	
4.3. Avaliação complementar do sistema, aplicado ao torneamento longitud	linal64
5. CONCLUSÕES	67
6. SUGESTÕES PARA TRABALHOS FUTUROS	69
7. REFERÊNCIAS	70
APÊNDICE A – MEDIÇÃO DO PERFIL h(mm) USINADO	72

ÍNDICE DE FIGURAS

Figura 2.1 - Microestrutura martensitica de um aço-carbono	5
Figura 2.2 - Microestrutura de um aço rápido M2	7
Figura 2.3 - Curvas de revenimento para o aço carbono e aço-rápido	9
Figura 2.4 – Micrografia através de Microscopia Eletrônica de Transmissão, mostrando o)S
carbonetos secundários (pontos pretos). Após revenimento a 540 °C (a) e a 550 °C (b)	11
Figura 2.5 - Resfriamento criogênico da peça	13
Figura 2.6 - Resfriamento criogênico do cavaco	14
Figura 2.7 - Aplicação de LN2 no dorso da ferramenta de corte	15
Figura 2.8 - Esquema de usinagem híbrida com laser de CO2	16
Figura 2.9 - Método de resfriamento criogênico direto por spray	17
Figura 2.10 - Método de resfriamento criogênico direto por jato	18
Figura 2.11 - Tratamento criogênico para o aço-rápido	19
Figura 2.12 - Vida da ferramenta na furação do aço inox 316 e 304	20
Figura 3.1 - Torno IMOR série MIN V 200X500.	22
Figura 3.2 - Corpo de prova montado na placa do torno	23
Figura 3.3 - Desenho do corpo de prova usado na pesquisa	23
Figura 3.4 - Microestrutura do aço do corpo de prova atacado com Nital a 2% e ampliaçã	o de
500X	24
Figura 3.5 - Ferramenta de corte usada nos testes. (1) Superfície de saída; (2) Superfície de saída;	de
folga secundária; (3) Superfície de folga principal.	25
Figura 3.6 - Microestrutura da ferramenta de corte (ampliação de 1000X e atacado com N	Vital
2% e Groesbeck por 6 segundos)	26
Figura 3.7 - Sistema aplicação de LN2	27
Figura 3.8 - Válvulas de alívio e manômetro do aspersor	28
Figura 3.9 - Aspersor do botijão de LN2	29
Figura 3.10 - Esquema mostrando o princípio de funcionamento do sistema de aplicação	do
LN2	30
Figura 3.11 - Raque com <i>manifold</i>	31
Figura 3.12 - Parte inferior do raque, mostrando o posicionamento do porta-ferramenta	32
Figura 3.13 - Montagem dos tubos para aplicação de LN2	33
Figura 3.14 - Posicionamento dos bicos de descarga de LN2 em relação à ferramenta de o	corte.
	33
Figura 3.15 - Posições e sentidos indicados pelas setas de medição da rugosidade media ((Ra).
Eiguno 2.16 Desisionemento de musesímetro norre medição de musesidade módio	35
Figura 5.10 - Posicionamento do rugosimetro para medição da rugosidade media	
rigura 5.17 - Degrau gerado na race da peça usinada decorrente da raina da ponta da	27
Eigure 2.19 Leventemente de perfil de superfísie veine de com relégie servere der	37
Figura 5.16 - Levantamento do perm da superfície usinada com relogio comparador	38
Figura 5.19 - Perfii da face usinada, no primeiro ensaio na condição a seco	
Figura 5.20 - Microscopio utilizado para medição do desgaste de flanco das ferramentas	ae
сотте	40

Figura 3.21 - Desgaste de flanco observado na ferramenta de corte após o primeiro ensaio na
condição SF
Figura 4.1 - Perfil da superfície usinada para o primeiro ensaio a seco (SECO 1)43
Figura 4.2 - Perfil da superfície usinada para o segundo ensaio a seco (SECO 2)43
Figura 4.3 - Perfil da superfície usinada para o terceiro ensaio a seco (SECO 3)44
Figura 4.4 - Perfil da superfície usinada para o quarto ensaio a seco (SECO 4)44
Figura 4.5 - Perfil da superfície usinada para o quinto ensaio a seco (SECO 5)45
Figura 4.6 - Perfil da superfície usinada para o sexto ensaio a seco (SECO 6)45
Figura 4.7 - Perfil da superfície usinada para o primeiro ensaio com aplicação de LN2 na
superfície de saída (SS1)
Figura 4.8 - Perfil da superfície usinada para o segundo ensaio com aplicação de LN_2 na
superfície de saída (SS2)46
Figura 4.9 - Perfil da superfície usinada para o terceiro ensaio com aplicação de LN2 na
superfície de saída (SS3)
Figura 4.10 - Perfil da superfície usinada para o quarto ensaio com aplicação de LN2 na
superfície de saída (SS4)
Figura 4.11 - Perfil da superfície usinada para o quinto ensaio com aplicação de LN2 na
superfície de saída (SS5)
Figura 4.12 - Perfil da superfície usinada para o sexto ensaio com aplicação de LN_2 na
superfície de saída (SS6)
Figura 4.13 - Perfil da superfície usinada para o primeiro ensaio com aplicação de LN2 na
superfície de folga (SF1)
Figura 4.14 - Perfil da superfície usinada para o segundo ensaio com aplicação de LN ₂ na
superfície de folga (SF2)
Figura 4.15 - Perfil da superfície usinada para o terceiro ensaio com aplicação de LN_2 na
superfície de folga (SF3)
Figura 4.16 - Perfil da superfície usinada para o quarto ensaio com aplicação de LN_2 na
superfície de folga (SF4)
Figura 4.17 - Perfil da superfície usinada para o quinto ensaio com aplicação de LN ₂ na
superfície de folga (SF5)
Figura 4.18 - Perfil da superfície usinada para o sexto ensaio com aplicação de LN2 na
superfície de folga (SF6)
Figura 4.19 - Perfil da superfície usinada para o primeiro ensaio com aplicação de LN_2 nas
superfícies de saída e de folga (SS/SF1)
Figura 4.20 - Perfil da superfície usinada para o segundo ensaio com aplicação de LN_2 nas
superfícies de saída e de folga (SS/SF2)
Figura 4.21 - Perfil da superfície usinada para o terceiro ensaio com aplicação de LN ₂ nas
superfícies de saída e de folga (SS/SF3)
Figura 4.22 - Perfil da superfície usinada para o quarto ensaio com aplicação de LN2 nas
superfícies de saída e de folga (SS/SF4)
Figura 4.23 - Perfil da superfície usinada para o quinto ensaio com aplicação de LN_2 nas
superfícies de saída e de folga (SS/SF5)
Figura 4.24 - Perfil da superfície usinada para o sexto ensaio com aplicação de LN2 nas
superfícies de saída e de folga (SS/SF6)54

Figura 4.25 - Intervalos de confiança (ICs) para a média populacional (µ) da variável aleató	ria
"ponto de falha" em cada condição de corte	58
Figura 4.26 - Intervalos de confiança (ICs) para as médias populacionais da variável aleatór	ia
"Ra" em cada condição de corte	61
Figura 4.27 - Intervalos de confiança (ICs) para as médias populacionais da variável aleatór	ia
desgaste de flanco em cada condição de corte	62
Figura 4.28 - Preparação do corpo de prova para o torneamento cilíndrico externo	65
Figura 4.29 - Ferramenta de corte após torneamento cilíndrico a seco e com aplicação de LN	N 2
na superfície de saída (SS) e na superfície de folga (SF).	66

ÍNDICE DE TABELAS

ÍNDICE DE TABELAS (APÊNDICE)

Tabela A 1 - Medição do perfil h(mm) usinado para a condição SECO 1	72
Tabela A 2 - Medição do perfil h(mm) usinado para a condição SECO 2	73
Tabela A 3 - Medição do perfil h(mm) usinado para a condição SECO 3	74
Tabela A 4 - Medição do perfil h(mm) usinado para a condição SECO 4	75
Tabela A 5 - Medição do perfil h(mm) usinado para a condição SECO 5	76
Tabela A 6 - Medição do perfil h(mm) usinado para a condição SECO 6	77
Tabela A 7 - Medição do perfil h(mm) usinado para a condição SF1	78
Tabela A 8 - Medição do perfil h(mm) usinado para a condição SF2	79
Tabela A 9 - Medição do perfil h(mm) usinado para a condição SF3	
Tabela A 10 - Medição do perfil h(mm) usinado para a condição SF4	
Tabela A 11 - Medição do perfil h(mm) usinado para a condição SF5	
Tabela A 12 - Medição do perfil h(mm) usinado para a condição SF6	
Tabela A 13 - Medição do perfil h(mm) usinado para a condição SS1	
Tabela A 14 - Medição do perfil h(mm) usinado para a condição SS2	
Tabela A 15 - Medição do perfil h(mm) usinado para a condição SS3	
Tabela A 16 - Medição do perfil h(mm) usinado para a condição SS4	
Tabela A 17 - Medição do perfil h(mm) usinado para a condição SS5	
Tabela A 18 - Medição do perfil h(mm) usinado para a condição SS6	
Tabela A 19 - Medição do perfil h(mm) usinado para a condição SF/SS1	90
Tabela A 20 - Medição do perfil h(mm) usinado para a condição SF/SS2	91
Tabela A 21 - Medição do perfil h(mm) usinado para a condição SF/SS3	92
Tabela A 22 - Medição do perfil h(mm) usinado para a condição SF/SS4	93
Tabela A 23 - Medição do perfil h(mm) usinado para a condição SF/SS5	94
Tabela A 24 - Medição do perfil h(mm) usinado para a condição SF/SS6	95

LISTA DE ABREVIATURAS E SIGLAS

ABNT	Associação Brasileira de Normas Técnicas
CO ₂	Gás carbônico
DFTE	Departamento de Física Teórica e Experimental
HSS	High Speed Steel (aço-rápido)
IC	Intervalo de confiança
LN_2	Nitrogênio líquido
SS	Nitrogênio líquido aplicado na superfície de saída
SF	Nitrogênio líquido aplicado na superfície de folga
SS/SF	Nitrogênio líquido aplicado na superfície de saída e de folga
MEV	Microscopia Eletrônica de Varredura ou Microscópio Eletrônico de Varredura
PPGEM	Programa de Pós-Graduação em Engenharia Mecânica
PRH14	Programa de Formação de Recursos Humanos da Petrobras 14
UFRN	Universidade Federal do Rio Grande do Norte
α'。	Ângulo de folga secundário
χ'r	Ângulo de posição secundário
γο	Ângulo de saída
α	Ângulo de folga principal
χr	Ângulo de posição principal
$\lambda_{ m s}$	Ângulo de inclinação
a _p	Profundidade de corte
n	Rotação da peça (RPM)

RPM	Rotações por minuto
VB	Desgaste de flanco
VBB	Desgaste de flanco médio
Vc	Velocidade de corte
h	Ponto de falha da ferramenta
α	Ferrita
$\alpha + Fe_3C$	Perlita
π	Constante pi = 3,14159265
\overline{x}	Média amostral
t_{v}	Variável "t" da distribuição t-Student com v graus de liberdade
S	Desvio-padrão amostral
n	Número de elementos da amostra
μ	Média populacional

RESUMO

O presente trabalho apresenta um estudo do desempenho de ferramentas de aço-rápido no torneamento do aço ABNT 1020, sob condições de resfriamento criogênico com aspersão de nitrogênio líquido (LN₂) diretamente na região de corte. O objetivo principal foi manter a temperatura da ferramenta de corte abaixo da temperatura de amolecimento do aço-rápido (normalmente acima de 650°C) e, consequentemente, melhorar o desempenho dessas ferramentas em velocidades de corte superiores àquelas normalmente praticadas no corte à seco ou com lubrificação convencional. Foram realizados ensaios de faceamento rápido, em que a ferramenta de corte percorre a face da peça ao longo de seu raio a uma rotação constante, o que acarreta um aumento progressivo em sua velocidade de corte. Pôde-se verificar que devido à aplicação de LN2 a ferramenta de corte conseguiu usinar com velocidades de corte maiores que na condição a seco (SECO). Quando os jatos de LN₂ foram direcionados a superfície de saída e de folga (SS/SF), tal condição apresentou um aumento de 35,00% (em média) na velocidade usinada antes da falha da ferramenta; no entanto quando o LN₂ foi aplicado na superfície de folga (SF), a melhoria foi de 24,12% e para a condição de LN2 na superfície saída (SS) o aumento foi de 20,94%. Com esses resultados foi possível concluir que a aplicação de LN2 tendeu a melhorar o desempenho das ferramentas de açorápido testadas, e que essa melhora foi mais pronunciada quando da aplicação de LN2 nas superfícies de folga e de saída simultaneamente. Já para variável ponto de falha a análise do intervalo de confiança, mostrou que, estatisticamente, a um nível de confiança de 95%, não foi possível afirmar que existe diferença entre as médias populacionais do "ponto de falha" para as condições de corte (SECO-SF), (SECO-SS), (SS-SF) e (SF-SS/SF). Contudo para as condições (SECO-SS/SF) e (SS-SS/SF) houve diferenças entre as condições quando comparadas duas a duas. Observou-se também que a rugosidade média (Ra) tende a cair com

a aplicação de LN₂. Houve uma diferença significativa quando se compara a condição SECO com as condições SF, SS e SS/SF. O mesmo não se pode dizer dessas outras situações (SS-SF), (SS-SS/SF), (SF-SS/SF), pois, ao nível de significância, considerado, não podemos descartar a hipótese de se tratarem de ensaios diferentes. Observa-se que, num nível de confiança de 95%, não se pode afirmar que os desgastes de flancos (VB) não são iguais nas quatro condições de corte testadas. Este resultado já era esperado, visto que, após a falha da ferramenta, independente da condição de corte, a ferramenta perde material de sua ponta num valor que é proporcional à profundidade de corte usada, a partir deste ponto, praticamente nada de material é removido da peça. Para finalizar esse estudo o ensaio de torneamento longitudinal foi realizado inicialmente em caráter exploratório, devido à quantidade de ferramentas e material da peça, contudo, conseguiu-se obter a condição mais favorável ao se usinar um corpo de prova a velocidades de 162m/min quando o LN2 foi aplicado na superfície de folga (SF), e na superfície de saída (SS) em cada uma dessas condições. Esse valor de velocidade para torneamento longitudinal é bem elevado, quando são utilizadas ferramentas de aço-rápido. Quando se verifica o tempo de vida da ferramenta, foi possível observar um aumento em mais de 100%, pois, após cortar um trecho de 30mm, a aresta de corte ainda continuava preservada.

Palavras-chave: Usinagem criogênica, Nitrogênio líquido, Torneamento, Aço-rápido e Vida de ferramenta.

ABSTRACT

This work presents a study about the performance of HSS cutting tools when turning an ABNT 1020 steel under cryogenic condition using liquid nitrogen (LN_2) applied onto the cutting region. In this case, the main purpose was to keep the cutting tool temperature below the softening temperature of the HSS (normally above 650°C) improving the performance of these cutting tools at cutting speeds upper than that normally used in dry or wet conventional machining. A series of rapid facing trials was carried out at dry (SECO) and applying LN₂ at three different points on the cutting region [on the rake face (SS), on the flank face (SF) and on the rake and flank faces simultaneously (SS/SF)]. It could be verified that the use of LN_2 the cutting was able to machine cutting speeds higher than at dry condition. When the LN_2 was applied onto the rake and flank face simultaneously, the cutting speed showed an increase of 35% (on average) compared to the dry condition; when the LN_2 was applied only onto the flank face, the improvement was of 24,12% and of 20,94% for the LN₂ applied only onto the rake face. These results showed that the use of LN₂ tended to improve the performance of the trialled HSS cutting tools and this improvement was more effective when the LN₂ was applied onto the rake and flank faces simultaneously. For the variable called "failure point" (point where the cutting tool collapsed) a statistical analysis showed no difference among the conditions (SECO-SF), (SECO-SS), (SS-SF) and (SF-SS/SF). However, it could be observed statistical differences between the conditions (SECO-SS/SF) and the conditions (SS-SS/SF) when they are compared two by two. Compared to the dry condition, the results of average roughness (Ra) showed a tendency to drop when LN₂ was applied. Additional longitudinal turning trials were carried out to verify the performance of the HSS cutting tools assisted by LN_2 at this condition. It was observed an improvement upper to 100%.

Keywords: Cryogenic Machining, Liquid Nitrogen, Turning, High Speed Steel, Cutting Tool Life.

1. INTRODUÇÃO

Até meados da década de 1860 as ferramentas de corte usadas em processos de usinagem consistiam essencialmente de ferro ligado com 0,8 a 2% de carbono e elementos de liga tais como, manganês, silício, enxofre e fósforo. Estas ferramentas apresentavam uma baixa dureza a quente, o que limitava sua aplicação na usinagem do aço com velocidades de corte relativamente baixas (até 5 m/min, aproximadamente). Este material também requeria um tratamento térmico de têmpera, com resfriamento em água, o que lhe conferia dureza máxima de 950 HV e normalmente resultava no aparecimento de trincas (SHAW, 2005; TRENT, WRIGHT, 2000).

Em 1870 o britânico Robert Müshet apresentou um aço com composição aproximada de 2% de carbono, 1,6% de manganês, 5,5% de tungstênio e 0,4% de cromo que possuía uma notável capacidade de endurecer ao ar (*self-hardening*). Tal propriedade eliminava a necessidade de resfriamento em água, que normalmente resultava em problemas de formação de trincas. Além disso, o aço de Müshet era capaz de manter sua dureza a temperaturas mais elevadas do que os aços da geração anterior, o que resultou na aplicação destes na usinagem de aços com velocidades um pouco superiores, em torno de 8 m/min. Assim, este aço foi usado como ferramenta de corte até o início do século XX (SHAW, 2005).

Em 1901 F. W. Taylor e M. White apresentaram um aço com estabilidade estrutural superior, que permitia o uso de velocidades de corte em torno de 19 m/min, mais de 2 vezes

aquelas praticadas com o aço desenvolvido por Müshet. Isso lhe rendeu a denominação de *high speed steel* (HSS), ou seja, aço-rápido. O segredo do aço-rápido não estava somente na composição química deste, mas também em seu tratamento térmico de endurecimento secundário (SHAW, 2005).

Em 1906, Taylor e White chegaram a uma composição química e tratamento térmico considerado ótimo para as ferramentas de aço-rápido. A mesma era composta por 0,67% C; 18,91% W; 5,47% Cr; 0,11% Mn; 0,29% V e o restante de Fe. Eles descobriram ainda que, se esse aço fosse aquecido até a temperatura logo abaixo da linha *solidus* (aproximadamente entre 1250 e 1290 °C), resfriado em banho de chumbo até 620°C, depois resfriado até a temperatura ambiente, seguido por um tratamento de revenimento logo abaixo de 600°C, o mesmo resultava num material de ferramenta de corte capaz de usinar aços a velocidades quatro vezes àquelas praticadas com o aço de Müshet e seis vezes àquelas aplicadas com as ferramentas de aço carbono (TRENT; WRIGHT, 2000).

Essa característica de elevada dureza a quente do aço-rápido se deve, dentre outros, à presença de carbonetos secundários dispersos na matriz martensítica que se formam durante o seu revenimento (TRENT; WRIGHT, 2000). Maiores detalhes sobre o mecanismo de endurecimento do aço-rápido estão descritos no item 2.1 do capítulo 2 deste trabalho.

Apesar do aço-rápido apresentar elevada dureza a temperatura ambiente, o principal fator que limita a velocidade de corte na usinagem com este tipo de material para ferramenta é a sua baixa dureza a quente relativa. Quando a temperatura de corte atinge valores superiores a 600°C, o aço-rápido sofre um amolecimento considerável, o que conduz ao colapso da aresta cortante por deformação plástica (TRENT; WRIGHT, 2000).

O uso de fluidos criogênicos como agentes de redução da temperatura na usinagem com aço-rápido pode ser uma alternativa interessante no sentido de dar uma sobrevida para este importante material de ferramenta, que apresenta um custo baixo frente aos demais materiais de ferramenta de corte.

O uso de CO₂ e LN₂ já é uma realidade na usinagem de superligas com ferramentas de metal duro. O método de aplicação mais difundido é o Resfriamento Criogênico Direto *(Cryogenic Spraying and Jet Cooling)*, em que o fluido é aplicado diretamente na região de corte, reduzindo as temperaturas desenvolvidas durante a usinagem e, consequentemente, aumentando a vida útil da ferramenta (YILDIZ; NALBANT, 2008).

Com intuito de retirar calor da zona de corte, evitando que o aço-rápido alcance níveis de temperatura capazes de provocar seu amolecimento, fez-se este estudo. Neste caso, o fluido criogênico usado foi o LN_2 e o material usinado foi o aço ABNT 1020.

O capítulo seguinte apresenta uma revisão bibliográfica sobre aço-rápido e usinagem criogênica.

2. REVISÃO BIBLIOGRÁFICA

2.1. AÇO RÁPIDO

Até meados de 1870, o único material disponível como ferramenta de corte era o açocarbono. Composto basicamente por 1% de carbono, 0,2% de manganês e ferro, o açocarbono era endurecido através de um tratamento térmico que consistia no seu aquecimento a uma temperatura entre 750 a 835°C (dizia-se que quando o aço atingia esta temperatura, ele adquiria uma coloração "vermelho-cereja") seguido por um rápido resfriamento em água. Após este tratamento térmico, a dureza podia aumentar a um valor máximo de até 950HV. Os tratamentos com temperaturas acima do "vermelho-cereja" não eram realizados, pois além de não conferirem um acréscimo significativo à dureza do aço-carbono ainda o deixava frágil (SHAW, 2005; TRENT; WRIGTH, 2000).

Esse aumento na dureza do aço é o resultado do rearranjo dos átomos para produzir uma estrutura martensita, a qual apresenta uma estrutura acicular de alta dureza. A dureza da martensita se deve ao fato das camadas de átomos de ferro estarem submetidas a certa restrição ao escorregamento entre elas, devido à presença de átomos de carbono nos interstícios da estrutura cristalina do ferro, o que força os átomos deste elemento a se deslocarem de suas posições normais na rede, provocando uma espécie de travamento destes, resultando numa estrutura altamente rígida e instável. A Figura 2.1. mostra uma micrografia de uma estrutura martensítica.

Figura 2.1 - Microestrutura martensitica de um aço-carbono.

Fonte: <<u>http://pwatlas.mt.umist.ac.uk/internetmicroscope/micrographs/microstructures/more-</u> metals/steel-micrographs/martensitic/water-quenched_z6.html> Acesso em: 20 set. 2014.

Se reaquecida a uma temperatura acima de 200 °C, os átomos de carbono começam a se mover de suas posições instáveis e o aço passa por uma transformação gradual onde o mesmo perde dureza e aumenta sua ductibilidade.

Assim em condições de corte essas ferramentas perdem rapidamente sua dureza com o aumento da temperatura (baixa dureza a quente) podendo apenas ser usadas para usinar o aço a velocidades relativamente baixas (até em torno de 4,5m/min) (TRENT; WRIGTH, 2000). Em 1870 o britânico Robert Müshet apresentou um aço com composição aproximada de 2% de carbono, 1,6% de manganês, 5,5% de tungstênio e 0,4% de cromo que possuía uma notável capacidade de endurecer ao ar (*self-hardening*). Tal propriedade eliminava a necessidade de resfriamento em água, que normalmente resultava em problemas de formação de trincas. Além disso, o aço de Müshet era capaz de manter sua dureza a temperaturas mais elevadas do que os aços da geração anterior, o que resultou na aplicação destes na usinagem de aços com velocidades um pouco superiores, em torno de 8 m/min. Assim, este aço foi usado como ferramenta de corte até o início do século XX (SHAW, 2005).

Em 1901 F. W. Taylor e M. White apresentaram um aço com estabilidade estrutural superior, que permitia o uso de velocidades de corte em torno de 18 m/min, cerca de 2,3 vezes àquelas praticadas com o aço desenvolvido por Müshet. Isso lhe rendeu a denominação de *high speed steel* (HSS), ou seja, aço-rápido. Ao contrário do que se imaginava o segredo do aço-rápido não estava propriamente na composição química deste, mas sim em seu tratamento térmico.

Através de ensaios minuciosos, Taylor e White chegaram em 1906 a uma composição química e tratamento térmico considerado ótimo para as ferramentas de aço-rápido. A mesma era composta por 0,67% C; 18,91% W; 5,47% Cr; 0,11% Mn; 0,29% V e o restante de Fe. Eles descobriram ainda, que se esse aço fosse aquecido rapidamente até a temperatura logo abaixo da linha *solidus* (aproximadamente entre 1250 e 1290°C), resfriado em banho de chumbo até 620°C, depois resfriado até a temperatura ambiente, seguido por um tratamento de

revenimento logo abaixo de 600°C, o mesmo resultava num material de ferramenta de corte capaz de usinar aços a velocidades quatro vezes àquelas praticadas com o aço de Müshet e seis vezes àquelas aplicadas com as ferramentas de aço carbono (TRENT; WRIGTH, 2000).

Essa característica de elevada dureza a quente do aço-rápido se deve principalmente à presença de carbonetos secundários dispersos na matriz martensítica que se formam durante o seu revenimento como mostrado na Figura 2.4.

A dureza a temperatura ambiente do aço-rápido está em torno de 850 HV, bem mais baixa do que a dureza de muitos aços carbono. A Figura 2.2 mostra uma micrografia da estrutura de um aço-rápido M2. A matriz consiste de martensita. Os elementos tungstênio, molibdênio e vanádio, tendem a combinar com o carbono para formar carbonetos extremamente duros tais como, Fe₃(W, Mo)₃C e V₄C₃. (Carbonetos primários)

Figura 2.2 - Microestrutura de um aço rápido M2.

Fonte: Trent e Wrigth (2000).

A medida que a temperatura é aumentada, esses carbonetos tendem a se dissolverem, isto é, tungstênio, molibdênio, vanádio e carbono entram em solução no ferro. Quanto maior for a temperatura, maior será a quantidade de elementos dissolvidos no ferro. Porém, mesmo próximo ao ponto de fusão, algumas dessas partículas permanecem e a presença destas inibe o crescimento do grão. É por esta razão que os aços-rápido podem ser aquecidos a temperaturas tão altas quanto 1290 °C sem se tornarem frágeis. Estas partículas de carbonetos são mais duras do que a matriz martensítica (Fe₃W₃C = 1150 HV e V₄C₃ = 2000 HV). Porém, elas constituem de 10 a 15% do volume total da estrutura e, não são as únicas responsáveis pelo bom desempenho das ferramentas de aço-rápido, que é devido à presença de outros carbonetos formados após o endurecimento por precipitação, durante a operação de revenimento. Estas partículas são pequenas para serem observadas através de microscopia ótica, tendo cerca de um centésimo daquelas partículas de carbonetos mostradas na Figura 2.2.

A Figura 2.3. mostra uma curva de revenimento típica para um aço-rápido. No início, como acontece com os aços carbono, a dureza começa a cair, mas acima de 400 °C, ela começa a aumentar novamente e, após um revenimento entre 500 e 600 °C, a dureza é frequentemente maior do que antes do tratamento do revenimento. Se a temperatura de revenimento for aumentada além dessa faixa de valores, observa-se uma queda brusca na dureza.

Figura 2.3 - Curvas de revenimento para o aço carbono e aço-rápido.

Fonte: Trent e Wrigth (2000).

O endurecimento secundário, após o tratamento de revenimento em torno de 560 °C é causado pela formação, dentro da matriz martensítica, de partículas de carbonetos complexos do tipo M₂C extremamente pequenos. Boa parte do tungstênio, molibdênio e vanádio que entrou em solução com o ferro durante a alta temperatura de tratamento é mantido em solução durante o resfriamento até a temperatura ambiente. No reaquecimento a temperaturas entre 400 e 600 °C eles precipitam por toda a estrutura martesítica formando partículas de carbonetos extremamente numerosas. Este processo é conhecido como endurecimento por precipitação.

Em um estudo realizado por El-Rakayby e Mills (1986) pode-se identificar através de microscopia eletrônica de transmissão os precipitados resultantes do endurecimento

secundário no aço-rápido M42 como sendo do tipo M₂C, com uma estrutura cúbica de face centrada. As micrografias mostradas na Figura 2.4 apresentam estas partículas com dimensões menores do que 0,05 µm. O principal metal é o Mo, com pequenas percentagens de V e Cr. Tais micrografias foram obtidas de amostras revenidas a 540 e 550 °C. Até 560 °C, as partículas permanecem estáveis durante muitas horas e endurecem o aço por bloquearem o movimento de discordâncias que facilitaria o escorregamento entre as camadas de átomos de ferro. A altas temperaturas, particularmente acima de 650 °C, essas partículas se tornam grosseiras rapidamente e perdem suas capacidades de endurecer a matriz, promovendo o desenvolvimento de mecanismos de desgaste tais como Deformação Plástica Superficial a Altas Temperaturas, Deformação Plástica da Cunha Cortante sob Altas Tensões Compressivas, entre outros (TRENT; WRIGHT, 2000). Assim, quando da utilização do açorápido em usinagem como ferramenta de corte, é preciso considerar sua perda de resistência e as mudanças permanentes em sua estrutura quando este é aquecido acima de 650 °C, o que limita a taxa de remoção de material quando da usinagem de metais de alto ponto de fusão e suas ligas. Valores típicos de velocidade de corte recomendados para a usinagem com ferramentas de aço-rápido nunca ultrapassam 60 m/min.

Figura 2.4 – Micrografia através de Microscopia Eletrônica de Transmissão, mostrando os carbonetos secundários (pontos pretos). Após revenimento a 540 °C (a) e a 550 °C (b).

Fonte: El-Rakayby e Mills (1986).

Porém, a usinagem com aço-rápido assistida por fluidos criogênicos pode auxiliar na

otimização do desempenho deste importante material.

A seguir é apresentada uma revisão bibliográfica sobre a Usinagem Criogênica.

2.2. USINAGEM CRIOGÊNICA

Segundo Bermingham (2011), o uso de fluidos criogênicos nas operações de usinagem, além de melhorias no desempenho das ferramentas de corte, visa a aplicação de um fluido seguro, limpo e não tóxico, no corte de materiais de elevada dureza e baixa condutividade térmica, tais como as superligas.

Pusavec (2011) relata que a usinagem de superligas demanda um grande esforço para remoção de material, que aliado às pobres propriedades térmicas desses materiais, promove a concentração de calor na ponta da ferramenta de corte, levando-a rapidamente ao colapso.

De acordo com Yildiz e Nalbant (2008), as seguintes técnicas referentes ao uso de fluidos criogênicos em usinagem podem ser citadas:

- > Pré-resfriamento criogênico da peça (Cryogenic pre-cooling the workpiece);
- Resfriamento criogênico indireto (Indirect cryogenic cooling);
- Resfriamento criogênico direto por jato ou spray (Cryogenic spraying and jet cooling);
- > Tratamento criogênico da ferramenta de corte (Cryogenic treatment).

Segue uma breve discussão sobre cada uma das técnicas citadas acima.

• Pré-resfriamento criogênico da peça

Neste caso o LN_2 é aplicado na peça ou cavaco com a finalidade de promover a transição dúctil-frágil do material. Hong e Ding (1999; 2001) obtiveram bons resultados referentes a quebra de cavacos na usinagem do aço AISI 1008 usando as duas técnicas ilustradas nas Figuras 2.5 e 2.6. Observa-se que no primeiro caso, o jato de LN_2 é direcionado para a peça e no segundo, o mesmo é direcionado para o cavaco.

Figura 2.5 - Resfriamento criogênico da peça.

Fonte: Hong e Ding (2001).

Figura 2.6 - Resfriamento criogênico do cavaco.

Fonte: Hong e Ding (1999).

Hong *et al* (2001) observaram que o pré-resfriamento criogênico da peça, além de promover um consumo elevado de LN_2 apresenta como inconvenientes o aumento da força de corte e da abrasão da ferramenta de corte

• *Resfriamento criogênico indireto*

No Resfriamento Criogênico Indireto (*Indirect cryogenic cooling*), o objetivo é resfriar a cunha de corte da ferramenta ao fazer o nitrogênio líquido circular em canais ou ser mantido em uma câmara próximo à zona de geração de calor (zona de cisalhamento secundária). Sua eficiência está ligada à condutividade térmica do material da ferramenta e à distância onde o LN_2 está confinado. A vantagem do resfriamento criogênico indireto reside no fato de que o LN_2 não entra diretamente em contato com a peça, o que reduz significativamente possíveis alterações no material a ser usinado.

Evans e Bryan (1991) realizaram alguns testes em que o resfriamento da ferramenta foi conduzido de forma indireta pela imersão do porta-ferramenta em LN₂.

Hong e Ding (2001) construíram um porta ferramenta onde o contato do LN_2 com a ferramenta de corte foi conseguido através de uma câmara posicionada entre o dorso da ferramenta e um calço Figura 2.7.

Figura 2.7 - Aplicação de LN2 no dorso da ferramenta de corte.

Fonte: Hong e Ding (2001).

Wang e Rajurkar (2000) projetaram um sistema para circulação de LN₂ pelo corpo da ferramenta de corte para o resfriamento de sua aresta.

Dandekar *et al.* (2010) estudaram a melhoria da usinagem da liga (Ti-6Al-4V), através da, usinagem assistida por laser e usinagem híbrida. A Figura 2.8. mostra um esquema da

configuração usada. Neste estudo pode se observar uma melhoria na vida da ferramenta, taxa de remoção de material.

Figura 2.8 - Esquema de usinagem híbrida com laser de CO2.

Fonte: Dandekar et al. (2010).

Como conclusões desse trabalho foram possíveis obter uma redução na energia específica de corte e na rugosidade da superfície quando comparado com a usinagem convencional. A vida da ferramenta foi melhorada em até 1,7 vezes para velocidades de corte abaixo de 107m/min, comparado com a usinagem convencional, enquanto que a usinagem híbrida o fator de vida da ferramenta foi melhorado para 2. A usinagem híbrida melhorou a usinabilidade da liga de Ti-6AL-4V para velocidades acima de 150m/min. As ferramentas que tinham revestimento duraram de 2-3 vezes mais que as ferramentas sem revestimento (DANDEKAR *et al.*, 2010).

• Resfriamento criogênico direto por jato ou spray

No Resfriamento criogênico direto por jato ou *spray* (*Cryogenic sprayng and jet cooling*), o objetivo é resfriar a zona de corte fazendo com que o nitrogênio líquido seja aplicado diretamente no conjunto peça/cavaco/ferramenta.

A Figura 2.9. ilustra um sistema de resfriamento direto com LN₂ desenvolvido por (ZURECKI *et al*, 2004).

Figura 2.9 - Método de resfriamento criogênico direto por spray.

Fonte: Zurecki et al., (2004)

Neste caso, o método usado foi à descarga de LN_2 por *spray*. Observa-se que o refrigerante não só atinge a zona de corte, como também outras regiões indesejadas.

Uma alternativa ao método anterior foi proposta por Hong (1999) em que o LN_2 é aplicado em regiões específicas da zona de corte através de bicos de pequeno diâmetro. A
técnica é denominada *Resfriamento Criogênico Direto por Jato (Cryogenic jet cooling)*. Neste caso apenas as regiões de interesse são atingidas, além de se reduzir o consumo de LN₂. A Figura 2.10. mostra o sistema desenvolvido por Hong.

Figura 2.10 - Método de resfriamento criogênico direto por jato.

Fonte: Hong e Ding, (2001).

Observa-se que o LN_2 é aplicado diretamente próximo às zonas de cisalhamento primário e de interface peça/superfície de folga, que são as principais responsáveis pelo aumento da temperatura da ferramenta durante o processo de corte (HONG; DING, 2001).

Além de reduzir o consumo de LN_2 e direcionar a aplicação do refrigerante, observouse que o método aumenta a dureza do material da peça, fragiliza o cavaco (facilitando sua quebra e remoção da zona de corte) e evita a formação da aresta postiça de corte (YILDIZ; NALBANT, 2008).

• Tratamento criogênico da ferramenta de corte

É um processo similar ao tratamento térmico. As amostras são refrigeradas a temperaturas criogênicas e mantidas a essas temperaturas por um longo tempo e então aquecidas à temperatura ambiente. Com o objetivo de promover resistência ao desgaste e estabilidade dimensional (BARRON, 1982).

Da Silva (1999), obteve bons resultados no tratamento criogênico de ferramentas de corte de aço-rápido. O objetivo do tratamento térmico é o de transformar a austenita retida em martensita onde ocorre a precipitação de carbonetos com o tratamento a baixas temperaturas, o ciclo térmico é apresentado na Figura 2.11. Seus resultados renderam um aumento de até 44% no diâmetro usinado no ensaio de faceamento rápido.

Figura 2.11 - Tratamento criogênico para o aço-rápido.

Fonte: Silva (1999).

Cicek *et al.* (2012), obteve resultados interessantes com brocas de HSS M3 tratadas criogenicamente na furação do aço inox austênitico. A vida da ferramenta teve seu desgaste minimizado, como observado na Figura 2.13. Na usinagem do aço AISI 316 foi possível um acréscimo de mais de 13,5% na quantidade de furos. Na furação do AISI304 o ganho foi de mais de 32% na quantidade de furos.

Figura 2.12 - Vida da ferramenta na furação do aço inox 316 e 304.

Fonte: Cicek *et al.*, (2012)

A seguir serão apresentados os materiais e métodos utilizados nesse trabalho.

3. MATERIAIS E MÉTODOS

Neste capítulo são apresentados os materiais e métodos utilizados no desenvolvimento deste trabalho.

O estudo constou basicamente da realização de ensaios de faceamento rápido em um corpo de prova de aço ABNT 1020 com ferramentas de aço-rápido. Os testes foram executados a seco e com aplicação de nitrogênio líquido (LN_2) nas superfícies de saída e de folga das ferramentas de corte. Durante os testes, levantou-se o perfil da superfície usinada e mediu-se sua rugosidade média (Ra), além do desgaste da ponta da ferramenta de corte. Os parâmetros rotação (n), avanço (*f*) e profundidade de corte (a_p) foram mantidos constantes em n=1000RPM, *f*=0,121mm/rot. e a_p =0,8mm para todos os ensaios.

Os testes ocorreram no Laboratório de Manufatura da UFRN num torno **IMOR** série **MIN V 200X500** que foi reformado e adaptado para a pesquisa conforme será descrito adiante. A Figura 3.1. mostra o torno que foi usado.

Figura 3.1 - Torno IMOR série MIN V 200X500.

Fonte: Autor, 2014.

A seguir são apresentados maiores detalhes sobre os materiais e métodos utilizados neste trabalho.

3.1. Corpo de Prova

A Figura 3.2 mostra o corpo de prova montado na placa do torno e sua geometria é mostrada na Figura 3.3.

Figura 3.2 - Corpo de prova montado na placa do torno.

Fonte: Autor, 2014.

Figura 3.3 - Desenho do corpo de prova usado na pesquisa.

Fonte: Autor, 2014.

Observa-se que foi feito um furo de 16 mm em seu centro, com a finalidade de se ajustar a penetração da ferramenta em relação à peça, visto que a usinagem ocorreu do centro para a periferia. Com objetivo de confirmar o aço usado para a fabricação do corpo de prova, fez-se a caracterização do mesmo através da análise de sua microestrutura e dureza. Após o corte, embutimento, lixamento, polimento e ataque químico de amostras do aço, estas foram analisadas em um microscópio Olimpus GX51 dotado de um software de contagem de fases que identificou-se tratar de um aço ABNT 1020. A Figura 3.4 mostra a micrografia do aço onde é possível identificar os microconstituintes α (ferrita) e α +Fe₃C (perlita), típicas de um aço hipoeutetóide.

Figura 3.4 - Microestrutura do aço do corpo de prova atacado com Nital a 2% e ampliação de 500X.

Fonte: Autor, 2014.

A medição da dureza foi feita em um durômetro de bancada Pantec-Panambra RASN RS. A escala usada foi a Rockwell B e o procedimento de medição seguiu a norma ABNT NBR NM ISO 6508-1:2008. O valor médio obtido foi de 68HRB, que corresponde à dureza média do aço ABNT 1020 (MATWEB, 2014).

3.2. Ferramentas de corte

As ferramentas de corte usadas foram barras quadradas (*Bits*) de aço rápido com dureza de 65 HRC (conforme especificação do fabricante) que foram afiadas em suas duas extremidades com a seguinte geometria: ângulo de saída $\gamma_0 = 15^\circ$, ângulo de folga principal α_0 = 12°, ângulo de folga secundário $\alpha'_0 = 7^\circ$, ângulo de inclinação $\lambda_s = 6^\circ$, ângulo de posição principal $\chi_r = 90^\circ$ e ângulo de posição secundário $\gamma'_r = 8^\circ$. A Figura 3.5 mostra uma das ferramentas afiada.

Figura 3.5 - Ferramenta de corte usada nos testes. (1) Superfície de saída; (2) Superfície de folga secundária; (3) Superfície de folga principal.

Fonte: Autor, 2014.

Para avaliar o material da ferramenta de corte foi realizada, a caracterização do mesmo através da análise de sua microestrutura. A análise foi feita em um microscópio eletrônico de bancada Hitachi TM 3000. A Figura 3.6 mostra a microestrutura do material, onde é possível se identificar alguns carbonetos primários.

Figura 3.6 - Microestrutura da ferramenta de corte (ampliação de 1000X e atacado com Nital 2% e Groesbeck por 6 segundos).

Fonte: Autor, 2014.

Foi realizada uma análise por EDS com o objetivo de identificar os elementos constituintes da ferramenta de corte. A Tabela 3.1 apresenta os resultados obtidos.

Elt.	Lin	Intensi	Егго	Conc	Uni
		(c/s)	2-sig		
С	Ka	18,72	1,117	3,168	wt.%
Si	Ka	39,21	1,617	1,215	wt.%
V	Ka	24,13	1,268	0,600	wt.%
Cr	Ka	184,50	3,507	4,479	wt.%
Mn	Ka	7,15	0,690	0,265	wt.%
Fe	Ka	1.905,99	11,272	84,790	wt.%
Co	Ka	21,11	1,186	1,100	wt.%
Mo	La	20,73	1,176	1,482	wt.%
W	La	7,28	0,697	2,901	wt.%
				100,000	wt.%
kV 20,0					
Ângulo de incidência 35,0°					
Tempo de aquisição 60,0					

Tabela 3.1 - Constituição da área analisada.

Fonte: Autor, 2014.

3.3 Sistema de Aplicação de LN₂

Para a aplicação de LN_2 na região de corte (nas superfícies de saída e de folga da ferramenta), montou-se o sistema mostrado na Figura 3.7

Figura 3.7 - Sistema aplicação de LN2.

Fonte: Autor, 2014.

Na figura 3.7 acima, pode-se identificar os seguintes componentes:

- Coluna: usada para sustentar o botijão de LN₂ e o compressor;
- **Botijão:** usado para armazenar LN₂;

- Compressor: usado para comprimir, armazenar e suprir ar comprimido para o botijão de LN₂;
- Mangueira de ar comprimido: usada para conduzir ar comprimido até o botijão de LN₂;
- Tubo flexível de inox: usado para conduzir LN₂ do botijão para o raque e daí para a ferramenta de corte;
- Raque: usado para sustentar o porta-ferramenta, as válvulas de regulagem de fluxo de LN₂ e tubulações.

O Botijão da Sempercrio SC 30 I com capacidade de armazenar até 30 litros de LN_2 é equipado com um aspersor dotado de duas válvulas de alívio que, durante os ensaios, foram reguladas para abrir com 1,8 bars.

Figura 3.8 - Válvulas de alívio e manômetro do aspersor.

Fonte: Autor, 2014.

As válvulas de alívio têm a função de controlar a pressão no interior do botijão. A Figura 3.8 mostra o bocal do botijão de LN₂, onde foram destacadas as válvulas de alívio e o manômetro que indica a pressão no interior do reservatório.

A Figura 3.9 mostra o aspersor fora do botijão. É possível identificar a entrada da mangueira de ar comprimido e a saída para o tubo flexível de inox que conduz o LN_2 até o raque e daí até à ferramenta de corte.

Figura 3.9 - Aspersor do botijão de LN2.

Fonte: Autor, 2014.

A Figura 3.10 mostra um esquema do funcionamento do sistema de aplicação de LN_2 . O mesmo consiste em fazer o ar comprimido proveniente do compressor entrar pelo aspersor e aumentar a pressão no interior do botijão. Isso faz com que LN_2 seja empurrado através do tubo flexível de inox e seja conduzido até o raque para a ferramenta de corte.

Figura 3.10 - Esquema mostrando o princípio de funcionamento do sistema de aplicação do LN2.

(Pressão de saída aprox. 1,8 bars)

Saída de LN2 para o raque

Fonte: Autor, 2014.

No Raque foi montado um *manifold* com três válvulas de agulha para distribuir e regular o fluxo de LN_2 que é conduzido para a ferramenta de corte (Figura 3.11).

Figura 3.11 - Raque com manifold.

Fonte: Autor, 2014.

Pode-se observar que o raque foi montado sobre o carro superior do torno.

Neste caso, a torre do mesmo teve que ser removida.

A Figura 3.12 mostra a parte inferior do raque. Observa-se o porta ferramenta

posicionado com as conexões e tubulações para a distribuição de LN₂.

Figura 3.12 - Parte inferior do raque, mostrando o posicionamento do porta-ferramenta.

Fonte: Autor, 2014.

A tubulação que conduz o LN_2 para a ferramenta de corte foi feita de tubos de cobre de 1/8 pol. de diâmetro interno.

O porta ferramentas foi furado em três posições para a passagem das tubulações de cobre, conforme Figura 3.13. O objetivo inicial era providenciar bicos de descarga de LN_2 nas seguintes posições: superfícies de saída e de folga principal da ferramenta de corte e na face da peça, antes de seu contato com a ferramenta de corte visando à fragilização do cavaco. Porém, devido ao emaranhamento de cavacos no tubo de cobre nesta última posição, decidiu-se eliminá-lo. A figura 3.14 mostra o posicionamento, em relação à ferramenta de corte, dos bicos de descarga de LN_2 .

Figura 3.13 - Montagem dos tubos para aplicação de LN2.

Fonte: Autor, 2014.

Figura 3.14 - Posicionamento dos bicos de descarga de LN2 em relação à ferramenta de corte.

Fonte: Autor, 2014.

O equipamento usado para comprimir o ar e pressurizar o botijão de LN_2 foi um compressor Schulz Air Plus CSA 8,3/25 com 2HP de potência, reservatório de 25 litros e pressões de operação de até 8,3 bars. Para os testes foi regulada a pressão de saída em 2,0 bars. A pressão dentro do botijão de LN_2 foi mantida em 1,8 bars.

O LN₂ usado na pesquisa foi adquirido no Laboratório de Criogenia do Departamento de Física Teórica e Experimental.

3.4. Testes de usinagem

Foram feitos testes de faceamento rápido em que a rotação do eixo-árvore foi mantida constante em 1000 RPM. Assim, levando-se em consideração as dimensões do corpo de prova Figura 3.3, as velocidades de corte mínima e máxima foram de aproximadamente $V_{cmin} = 50$ m/min e $V_{cmáx} = 471$ m/min, respectivamente, valores considerados elevados para a usinagem com aço-rápido à seco.

A profundidade de corte foi mantida constante e igual a $a_p=0.8$ mm e o avanço f=0,121 mm/rot.

As condições de teste foram as seguintes:

 \checkmark A seco (SECO);

- ✓ Com LN₂ aplicado na superfície de saída (SS);
- ✓ Com LN₂ aplicado na superfície de folga (SF);
- ✓ Com LN₂ aplicado nas superfícies de saída e de folga (SS/SF).

Nos ensaios com LN₂, as válvulas de regulagem de fluxo foram mantidas totalmente abertas.

Finalizado o faceamento com uma determinada condição, a rugosidade média (Ra) da superfície usinada era medida sobre quatro linhas espaçadas de 90 graus entre si, a partir de um círculo descrito na face da peça a 30 mm do centro desta, conforme mostra a Figura 3.15.

Figura 3.15 - Posições e sentidos indicados pelas setas de medição da rugosidade média (Ra).

Fonte: Autor, 2014.

O rugosímetro utilizado foi um Taylor Hobson Surtronic3 com resolução de $0,001\mu$ m, onde foi ajustado um *cut-off* de 0,8 mm. A Figura 3.16 mostra o posicionamento do rugosímetro em relação ao corpo de prova.

Figura 3.16 - Posicionamento do rugosímetro para medição da rugosidade média.

Fonte: Autor, 2014.

Com a rotação constante, a velocidade de corte aumenta do centro para a periferia, conforme a equação: $V_c = (\pi^*d^*n)/1000$, Onde: V_c é a velocidade de corte em m/min, d é o diâmetro em mm e n é a rotação em RPM. Desta forma, neste tipo de teste de faceamento, normalmente haverá uma posição diametral em que a ponta da ferramenta sofrerá falha catastrófica devida, principalmente, ao aumento da temperatura de corte. Na peça, isso gera um degrau na face usinada que pode ser visualmente identificado e detectado com o uso de um apalpador de um relógio comparador. A Figura 3.17 mostra um extremo de degrau.

Figura 3.17 - Degrau gerado na face da peça usinada decorrente da falha da ponta da ferramenta de corte.

Fonte: Autor, 2014.

Para melhor identificar a posição de início desses degraus no corpo de prova usinado, usou-se um relógio comparador com resolução de 0,001 mm para "varrer" a superfície da peça ao longo de seu raio, conforme mostrado na Figura 3.18.

Figura 3.18 - Levantamento do perfil da superfície usinada com relógio comparador.

Fonte: Autor, 2014.

Salienta-se que o levantamento do perfil da face usinada começava a partir de um ponto localizado a 3 mm da extremidade do furo central de 16 mm. Neste ponto, o relógio comparador era zerado e "varria-se" a superfície em direção à periferia da peça, registrandose os valores indicados pelo relógio comparador de 1 em 1 mm. Para efeito de avaliação foi considerado o ponto de falha da ferramenta de corte a região sobre a peça onde a altura h indicada pelo relógio comparador era maior ou igual a 0,1 mm ($h \ge 0,1mm$).

A Figura 3.19 mostra o gráfico obtido a partir do levantamento do perfil usinado para o primeiro ensaio na condição à seco. Pode-se identificar claramente o ponto de falha da ferramenta.

Figura 3.19 - Perfil da face usinada, no primeiro ensaio na condição a seco.

Fonte: Autor, 2014.

Ao final de todos os testes, as ferramentas de corte foram levadas até um microscópio digital USB Smileoptical BW1008 para a medição do desgaste de flanco da ferramenta. A Figura 3.20 mostra o sistema montado para a medição do desgaste.

Figura 3.20 - Microscópio utilizado para medição do desgaste de flanco das ferramentas de corte.

Fonte: Autor, 2014.

É importante salientar que durante as medições de desgaste de flanco a superfície de folga foi posicionada perpendicularmente ao eixo do microscópio (eixo da câmera).

A Figura 3.21 mostra o desgaste de flanco obtido na ferramenta após o primeiro ensaio na condição SF

Figura 3.21 - Desgaste de flanco observado na ferramenta de corte após o primeiro ensaio na condição SF.

Fonte: Autor, 2014.

Os valores monitorados (rugosidade, desgaste de flanco e ponto de falha da ferramenta de corte) obtidos nas quatro condições de testes (SECO; SS; SF; SS/SF) foram comparados dois a dois através do levantamento do intervalo de confiança para a diferença de suas médias populacionais. Neste caso foi considerado um nível de confiança de igual a 95%.

A seguir são apresentados os resultados obtidos.

4. RESULTADOS E DISCUSSÕES

Apresentam-se a seguir os resultados e discussões obtidos nesta pesquisa.

O capítulo está dividido da seguinte forma: 4.1. Avaliação do perfil usinado; 4.2. Avaliação da rugosidade média (Ra) da superfície usinada; 4.3. Avaliação do desgaste de flanco (VB) das ferramentas testadas e 4.4. Avaliação complementar do sistema, aplicado ao torneamento longitudinal.

4.1. Avaliação do perfil usinado

O Apêndice A mostra as tabelas com os valores das alturas relativas do perfil da superfície usinada para cada uma das quatro condições de corte aplicadas e suas repetições.

As Figuras 4.1 – 4.24 mostram os perfis das diversas superfícies usinadas obtidas com o relógio comparador. Neste caso, "Vc", no eixo das abscissas, representa a velocidade de corte no ponto de medição na direção de deslocamento do apalpador (direção de deslocamento do carro transversal do torno no sentido do centro para a periferia da peça) ao longo da superfície usinada; "h" representa a altura relativa do perfil num determinado ponto de velocidade "Vc" (neste caso, o ponto h=0 foi aquele à 3 mm da borda do furo central de 16 mm). O marcador

"◆" representa o ponto de falha da ferramenta de corte, ou seja, o primeiro ponto no qual h ≥ 0,1 mm.

Figura 4.1 - Perfil da superfície usinada para o primeiro ensaio a seco (SECO 1).

Figura 4.2 - Perfil da superfície usinada para o segundo ensaio a seco (SECO 2).

Figura 4.3 - Perfil da superfície usinada para o terceiro ensaio a seco (SECO 3).

Figura 4.4 - Perfil da superfície usinada para o quarto ensaio a seco (SECO 4).

Figura 4.5 - Perfil da superfície usinada para o quinto ensaio a seco (SECO 5).

Figura 4.6 - Perfil da superfície usinada para o sexto ensaio a seco (SECO 6).

Figura 4.7 - Perfil da superfície usinada para o primeiro ensaio com aplicação de LN₂ na superfície de saída (SS1).

Figura 4.8 - Perfil da superfície usinada para o segundo ensaio com aplicação de LN₂ na superfície de saída (SS2).

Figura 4.9 - Perfil da superfície usinada para o terceiro ensaio com aplicação de LN_2 na superfície de saída (SS3).

Figura 4.10 - Perfil da superfície usinada para o quarto ensaio com aplicação de LN₂ na superfície de saída (SS4).

Figura 4.11 - Perfil da superfície usinada para o quinto ensaio com aplicação de LN_2 na superfície de saída (SS5).

Figura 4.12 - Perfil da superfície usinada para o sexto ensaio com aplicação de LN_2 na superfície de saída (SS6).

Figura 4.13 - Perfil da superfície usinada para o primeiro ensaio com aplicação de LN_2 na superfície de folga (SF1).

Figura 4.14 - Perfil da superfície usinada para o segundo ensaio com aplicação de LN_2 na superfície de folga (SF2).

Figura 4.15 - Perfil da superfície usinada para o terceiro ensaio com aplicação de LN_2 na superfície de folga (SF3).

Figura 4.16 - Perfil da superfície usinada para o quarto ensaio com aplicação de LN₂ na superfície de folga (SF4).

Figura 4.17 - Perfil da superfície usinada para o quinto ensaio com aplicação de LN_2 na superfície de folga (SF5).

Figura 4.18 - Perfil da superfície usinada para o sexto ensaio com aplicação de LN₂ na superfície de folga (SF6).

Figura 4.19 - Perfil da superfície usinada para o primeiro ensaio com aplicação de LN_2 nas superfícies de saída e de folga (SS/SF1).

Figura 4.20 - Perfil da superfície usinada para o segundo ensaio com aplicação de LN_2 nas superfícies de saída e de folga (SS/SF2).

Figura 4.21 - Perfil da superfície usinada para o terceiro ensaio com aplicação de LN_2 nas superfícies de saída e de folga (SS/SF3).

Figura 4.22 - Perfil da superfície usinada para o quarto ensaio com aplicação de LN₂ nas superfícies de saída e de folga (SS/SF4).

Figura 4.23 - Perfil da superfície usinada para o quinto ensaio com aplicação de LN_2 nas superfícies de saída e de folga (SS/SF5).

Figura 4.24 - Perfil da superfície usinada para o sexto ensaio com aplicação de LN₂ nas superfícies de saída e de folga (SS/SF6).

A Tabela 4.1 mostra um resumo dos pontos de falha encontrados para cada condição de corte e repetição do ensaio, além de suas médias amostrais ($\overline{V_c}$) e os desvios-padrão amostrais (s).

		Condição de corte				
		SECO	SS	SF	SS/SF	
	1	283	302	302	302	
	2	264	283	302	302	
Ensaio	3	245	270	289	308	Ponto de falha
	4	157	251	276	302	(mm)
	5	170	270	232	302	
	6	232	258	276	308	
	$\overline{V_c}(\boldsymbol{m}/\boldsymbol{min})$	225,17	272,33	279,50	304,00	
	s(m/min)	50,96	18,25	26,01	3,10	

Tabela 4.1 - Ponto de falha para cada condição de corte e repetição do ensaio.

Através da análise dos dados da Tabela 4.1, considerando apenas as médias amostrais, percebe-se uma tendência de aumento da velocidade de corte até o ponto de falha (comprimento de avanço usinado até $h \ge 0,1$ mm), quando se usina com a aplicação de LN₂ nas três condições (SS, SF e SS/SF), em comparação com a usinagem a seco. Percentualmente, a velocidade de corte foi maior do que na condição a seco em 35,00% para a condição **SS/SF**; 24,12% para a condição **SF** e 20,94% para a condição **SS**. Mostrando que a aplicação de LN₂ tendeu a melhorar o desempenho das ferramentas de aço-rápido testadas, e que essa melhora foi mais pronunciada quando da aplicação de LN₂ nas superfícies de folga e de saída (SS/SF) simultaneamente. (DANDEKAR *et al.*; SILVA, 2010, 1999).

Os resultados percentuais mostrados no parágrafo anterior indicam apenas uma tendência de melhoria do desempenho da ferramenta de corte com a aplicação de LN_2 , porém, percebese que existe certa variabilidade dos dados amostrais obtidos, o que torna prudente uma análise estatística baseada, por exemplo, no intervalo de confiança (IC) para a média populacional (μ) da variável aleatória "ponto de falha" em cada condição de corte. Vale salientar que a variável aleatória "ponto de falha" foi considerada com suas probabilidades na forma normal.

A Tabela 4.2 mostra os limites inferior e superior para a média populacional (μ) do ponto de falha em cada condição de corte, os quais foram obtidos através do intervalo de confiança abaixo para um nível de confiança de 95%:

$$\bar{x} - t_5 \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_5 \frac{s}{\sqrt{n}}$$

Onde:

- t₅, é o valor da variável "t" da distribuição t-Student com cinco graus de liberdade e nível de confiança igual a 95%. Neste caso, t₅ = 2,571;

- *s*, é o desvio-padrão amostral da variável aleatória "ponto de falha";
- n, é o tamanho da amostra. Neste caso, n = 6;
- μ , é a média populacional da variável aleatória "ponto de falha".

Tabela 4.2 - Intervalos de confiança (ICs), em "m/min" para a média populacional (μ) da variável aleatória "ponto de falha" em cada condição de corte.

		Condição de corte					
		SECO	SS	SF	SS/SF		
IC	Limite inferior	171,68	253,18	252,20	300,75		
(m/min)	Limite superior	278,65	291,49	306,80	307,25		

A Figura 4.25 mostra os intervalos da Tabela 4.2 na forma de gráfico de barras, onde o

comprimento vertical de cada barra representa a largura do intervalo de confiança.

Através da análise da Figura 4.25, observa-se que, estatisticamente, com um nível de confiança de 95%, não é possível afirmar que existe diferença entre as médias populacionais da variável aleatória "ponto de falha" para as condições de corte (SECO-SF), (SECO-SS), (SS-SF) e (SF-SS/SF). Este fato pode ainda ser comprovado através de um teste "P", comparando-se a diferença das médias populacionais da variável aleatória "ponto de falha", para as condições de corte, duas a duas. A Tabela 4.3 apresenta estes resultados em que é possível verificar que o valor da estatística de teste "P" foi maior do que o nível de significância considerado, $\alpha = 0,05$, indicando que não se pode rejeitar a hipótese de que a diferença das médias populacionais (nas comparações duas a duas) seja diferente de zero. Contudo para as condições (SECO-SS/SF) e (SS-SS/SF) houve diferenças no nível de significância considerado.

Tabela 4.3 - Valor da estatística de teste "P"	para comparação duas a d	luas entre médias
populacionais dos "pontos de falha	" nas diversas condições d	e corte.

	Par de comparação						
	SECO-SS	SECO-SF	SECO-SS/SF	SS-SF	SS-SS/SF	SF-SS/SF	
Valor "P"	0,077	0,053	0,013	0,594	0,0085	0,070	

4.2. Avaliação da rugosidade média (Ra) da superfície usinada

A Tabela 4.4 mostra os valores de rugosidade média (Ra) obtidos na superfície usinada conforme descrito no Capítulo 3 – Materiais e Métodos, para as diversas condições de corte testadas.

				Condição	de corte	
			SECO	SS	SF	SS/SF
		1	14,7	14,2	13,6	13,4
	1	2	15	13,9	12,7	13,6
	I	3	14,6	14,1	13,3	14,2
		4	15	13,8	13,6	13,6
		1	14,7	14,1	16,3	14,3
	2	2	14,4	14,2	16,4	13,4
	<u></u>	3	15	13,5	16	14,3
		4	15,3	13,5	16,6	14,4
		1	14,4	13,5	9,21	14,4
Ra	3	2	15,3	13,1	9,41	14,5
(µm)		3	14,1	12,7	9,43	14,7
		4	14	13,1	9,83	14,3
		1	13,6	13,4	12,8	12,3
	1	2	13,7	13	13	12,2
	-	3	14	12,8	12,4	12,9
		4	13,7	13	12,4	13,1
		1	13,4	13	12,5	11,4
	5	2	13,5	12,7	13,3	12,3
	5	3	12,9	12,7	13	12,5
		4	13,2	12,6	12,8	12,3

Tabela 4.4 - Valores de rugosidade média (Ra) obtidos na superfície usinada para as diversas condições de corte.

		1	100	100	110	10
		l	13,8	12,8	11,9	13
	(2	13,8	13,1	12,3	13,6
	0	3	14,2	12,6	12	13,4
		4	14,1	12,8	12	12,9
		Ra(µm)	14,2	13,3	12,8	13,4
		s(µm)	0,67	0,54	2,08	0,90

A Tabela 4.5 mostra os limites inferior e superior do intervalo de confiança para as médias populacionais de Ra para as diversas condições de teste, considerando um nível de confiança de 95%.

Tabela 4.5 - Limites inferior e superior do intervalo de confiança (IC) para as médiaspopulacionais de Ra para as diversas condições de teste.

		Condição de corte					
		SECO SS SF SS/					
IC	Limite inferior	13,90	13,02	11,90	12,99		
(µm)	Limite superior	14,46	13,48	13,65	13,75		

A Figura 4.26 mostra os intervalos da Tabela 4.5 na forma de gráfico de barras, onde comprimento vertical de cada barra representa a largura do intervalo de confiança.

Através da análise dos dados da Tabela 4.5 e da Figura 4.26, observa-se que a rugosidade média (Ra) tende a cair com a aplicação de LN₂, quando comparada com a condição a seco. Pode-se observar uma diferença significativa quando se compara a condição SECO com as condições SF, SS e SS/SF, como pode ser confirmado pelos respectivos valores da estatística de teste "P" mostrados na Tabela 4.6 abaixo. O mesmo não pode-se dizer das outras condições (SS-SF), (SS-SS/SF), (SF-SS/SF), pois, ao nível de significância considerado não podemos descartar a hipótese de se tratarem de condições diferentes.

Tabela 4.6 - Valor "P" para comparação duas a duas entre médias populacionais dos "pontos de falha" nas diversas condições de corte.

		Par de comparação						
	SECO-SS SECO-SF SECO-SS/SF SS-SF SS-SS/SF SF-SS/S							
Valor "P"	3,86E-06	0,00387	0,00101	0,28719	0,59045	0,20908		

4.2. Avaliação do desgaste de flanco (VB) das ferramentas testadas

A Tabela 4.7 mostra os valores de desgaste de flanco (VB) obtidos nas ferramentas de corte para os ensaios nas diversas condições de usinagem e suas repetições e a Figura 4.27 mostra os intervalos de confiança obtidos para a média populacional da variável aleatória "VB" para cada condição de corte.

			Condição de corte				
		SECO	SS	SF	SS/SF		
	1	3,895	4,063	3,482	3,45		
	2	3,884	3,49	3,843	3,652	Desgaste	
aio	3	3,76	3,422	3,563	3,724	de	
Ens	4	3,33	5,531	3,329	3,779	VB	
	5	3,634	4,284	3,127	4,453	(mm)	
	6	3,51	3,14	3,926	3,046		
	x (mm)	3,669	3,988	3,545	3,684		
	s (mm)	0.222	0.867	0.303	0.461		

 Tabela 4.7 - Valores de desgaste de flanco (VB) obtidos nas ferramentas de corte para as diversas condições de usinagem.

Figura 4.27 - Intervalos de confiança (ICs) para as médias populacionais da variável aleatória desgaste de flanco em cada condição de corte.

ICs para os desgastes de flanco

Observa-se que, num nível de confiança de 95%, não se pode afirmar que os desgastes de flancos (VB) não são iguais nas quatro condições de corte testadas. Isso também pode ser concluído através da análise da estatística de teste "P", quando a mesma é comparada com o nível de significância considerado, $\alpha = 0.05$, como pode ser visto na Tabela 4.8 abaixo.

Tabela 4.8 - Valor "P" para comparação duas a duas entre médias populacionais dosdesgastes de flanco nas diversas condições de corte.

	Par de comparação						
	SECO-SS	SECO-SF	SECO-SS/SF	SS-SF	SS-SS/SF	SF-SS/SF	
Valor "P"	0,415	0,440	0,944	0,281	0,469	0,552	

Este resultado já era esperado, visto que, após a falha da ferramenta, independente da condição de corte, a ferramenta perde material de sua ponta num valor que é proporcional à profundidade de corte usada, a partir deste ponto, praticamente nada de material é removido da peça. Como todos os testes foram realizados com a mesma profundidade de corte e ao longo de todo raio da peça, conclui-se que os desgastes deveriam ter mais ou menos a mesma intensidade, independente da condição de usinagem. Isto pode ser confirmado pela análise visual dos desgastes das diversas ferramentas testadas mostrados na Tabela 4.9 a seguir.

		Condição de corte						
		SECO	SS	SF	SS/SF			
Ensaio	1	• 336 m	(083 mg	3)Alt rem	3.65 km			

Tabela 4.9 - Desgaste das ferramentas de corte testadas nas quatro condições de corte.

4.3. Avaliação complementar do sistema, aplicado ao torneamento longitudinal.

Com o intuito de se reforçar a hipótese de que o uso de LN₂ melhora o desempenho das ferramentas de aço-rápido, fez-se um ensaio de torneamento longitudinal com duas ferramentas de aço-rápido com a mesma geometria das anteriores, onde o diâmetro externo do corpo de prova foi de 86 mm e a rotação da peça foi mantida constante em 600 RPM, o que estabeleceu uma velocidade de corte 162 m/min, considerada elevada para a usinagem do aço ABNT 1020 com ferramenta de aço-rápido. A Figura 4.28 mostra o corpo de prova usado neste teste, nele pode-se observar trechos de 30 mm separados por rasgos de 3 mm. O ensaio

consistiu em usinar cada trecho com e sem aplicação de LN_2 na superfície de saída (SS) e na superfície de folga (SF).

Os resultados desse experimento são apresentados na Figura 4.29, pois, com a aplicação de na superfície de folga (SF) e na superfície de saída (SS) a ferramenta de corte ainda tinha sua aresta cortante preservada enquanto que no corte a seco a ferramenta apresentava um desgaste de flanco médio de $V_b = 4,02 \pm 0,199 mm$ para dois ensaios realizados. Em termos de velocidade de corte para aço-rápido houve um aumento na vida da ferramenta em mais de 100%.

Figura 4.28 - Preparação do corpo de prova para o torneamento cilíndrico externo.

Figura 4.29 - Ferramenta de corte após torneamento cilíndrico a seco e com aplicação de LN2 na superfície de saída (SS) e na superfície de folga (SF).

5. CONCLUSÕES

Com base nos resultados e discussões anteriores, as seguintes conclusões podem ser apresentadas:

- Percentualmente, a velocidade de corte foi maior do que na condição a seco em 35,00% para a condição SS/SF; 24,12% para a condição SF e 20,94% para a condição SS. Mostrando que a aplicação de LN₂ tendeu a melhorar o desempenho das ferramentas de aço-rápido testadas, e que essa melhora foi mais pronunciada quando da aplicação de LN₂ nas superfícies de folga e de saída simultaneamente.
- Através da análise do intervalo de confiança, observa-se que, estatisticamente, com um nível de confiança de 95%, não é possível afirmar que existe diferença entre as médias populacionais da variável aleatória "ponto de falha" para as condições de corte (SECO-SF), (SECO-SS), (SS-SF) e (SF-SS/SF). Contudo para as condições (SECO-SS/SF) e (SS-SS/SF) houve diferenças entre as condições quando comparadas duas a duas.
- Observa-se que a rugosidade média (Ra) tende a cair com a aplicação de LN₂, quando comparada com a condição a seco. Pode-se observar uma diferença significativa quando se compara a condição SECO com as condições SF, SS e SS/SF. O mesmo não se pode dizer das outras condições (SS-SF), (SS-SS/SF), (SF-SS/SF), pois, ao

nível de significância considerada não podemos descartar a hipótese de se tratarem de condições diferentes.

- Observa-se que, num nível de confiança de 95%, não se pode afirmar que os desgastes de flancos (VB) não são iguais nas quatro condições de corte testadas. Isso também pode ser concluído através da análise da estatística de teste "P", quando a mesma é comparada com o nível de significância considerado. Este resultado já era esperado, visto que, após a falha da ferramenta, independente da condição de corte, a ferramenta perde material de sua ponta num valor que é proporcional à profundidade de corte usada, a partir deste ponto, praticamente nada de material é removido da peça.
- No torneamento longitudinal conseguiu-se usinar a velocidades de até 162mm/min quando o LN₂ foi aplicado na superfície de folga (SF) e na superfície de saída (SS), o que é bem elevado para ferramentas de aço-rápido e para o caso da vida da ferramenta houve um aumento em mais de 100%, pois, após cortar um trecho de 30mm a aresta de corte ainda estava preservada.

6. SUGESTÕES PARA TRABALHOS FUTUROS

Como sugestões para trabalhos futuros, podem-se citar:

- Fazer um estudo de modelagem computacional do efeito térmico quando da aplicação do LN₂ sob a região de corte;
- Utilizar outro cilindro que suporte pressões de trabalho superiores a 2 bars, pois, outros trabalhos tem utilizados pressões superiores, a perda de carga consequentemente será mais facilmente superada;
- Estabelecer procedimentos para monitorar a temperatura na zona de corte, para que outras conclusões referentes aos mecanismos de desgaste possam ser comprovadas em termos da temperatura;
- Fazer um estudo de viabilidade econômica do processo.
- Aplicar o torneamento longitudinal como método para ensaio, pois, foi o que apresentou resultados mais contundentes ou então o uso de uma máquina onde se possa alternar a rotação da placa de três castanhas para que a velocidade de corte V_c se mantenha constante no faceamento rápido.
- Utilizar a técnica de resfriamento da ferramenta para obter ferramentas com qualidade superior em termos de microestrutura.

7. REFERÊNCIAS

BARRON, R. Cryogenic treatment of metals to improve wear-resistance. **Cryogenics**, v. 22, n. 8, p. 409-413, 1982.

CICEK, A. et al. Performance of cryogenically treated M35 HSS drills in drilling of austenitic stainless steels. **International Journal of Advanced Manufacturing Technology**, v. 60, n. 1-4, p. 65-73, APR 2012.

DA SILVA, F. J., Influência Do Tratamento Criogênico no Desempenho de Ferramentas de Aço-Rápido, **Dissertação de Mestrado**, Universidade Federal de Uberlândia, 1999

DANDEKAR, C.; SHIN, Y.; BARNES, J. Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining. **International Journal of Machine Tools & Manufacture**, v. 50, n. 2, p. 174-182, FEB 2010.

DINIZ, A.E.; MARCONDES, F.C.; COPPINI, N.L. Tecnologia da usinagem dos materiais.8. ed. São Paulo: Artliber, 244p, 2013.

EL-RAKAYBY, A.M. AND MILLS, B., Mat. Sci. & Tech., 2, 175 (1986)

EVANS, C.; BRYAN, J. B. Cryogenic Diamond Turning of Stainless Steel. **CIRP Annals -Manufacturing Technology**, v. 40, n. 1, p. 571-575, // 1991.

F. PUSAVEC, H. HAMDI, J. KOPAC, I.S. JAWAHIR, Surface integrity in cryogenic machining of nickel based alloy—Inconel 718, Journal of Materials Processing Technology, Volume 211, Issue 4, 1 April 2011, Pages 773-783, ISSN 0924-0136

M.J. BERMINGHAM, J. KIRSCH, S. SUN, S. PALANISAMY, M.S. DARGUSCH, New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V, **International Journal of Machine Tools and Manufacture**, Volume 51, Issue 6, June 2011, Pages 500-511, ISSN 0890-6955

MACHADO, A. et al. Teoria da usinagem dos materiais. 2ª edição. Editora Blucher, 2011. ISBN 978-85-212-0606-4.

S.Y. HONG, I. MARKUS, W. JEONG, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti–6Al–4V, **International Journal of Machine Tools and Manufacture** 41 (2001) 2245–2260.

S.Y. Hong, Y. Ding, Micro-temperature manipulation in cryogenic machining of low carbon steel, **Journal of Materials Processing** Technology 116 (2001) 22–30.

S.Y. Hong, Y. Ding, R.G. Ekkens, Improving low carbon steel chip breakability by cryogenic chip cooling, **International Journal of Machine Tools and Manufacture** 39 (1999) 1065–1085

SHAW, M. C. *Metal cutting principles*. 2. ed. Oxford University Press, 651p, 2005.

TRENT, E. M.; WRIGHT, P. K. Metal Cutting: Fourth Edition. 4th ed. Butterworth– Heinemann, 2000. ISBN ISBN 0-7506-7069-X.

WANG, Z.; RAJURKAR, K. Cryogenic machining of hard-to-cut materials. **Wear**, v. 239, n. 2, p. 168-175, APR 2000.

YILDIZ, Y.; NALBANT, M. A review of cryogenic cooling in machining processes. International Journal of Machine Tools & Manufacture, v. 48, n. 9, p. 947-964, JUL 2008.

ZURECKI, Z.; GHOSH, R.; FREY, J. Finish-turning of hardened powder metallurgy steel using cryogenic cooling. **International Journal of Powder Metallurgy**, v. 40, n. 1, p. 19-31, JAN-FEB 2004.

APÊNDICE A – MEDIÇÃO DO PERFIL h(mm) USINADO

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,017	24	75
3	0,025	26	82
4	0,008	28	88
5	0,013	30	94
6	0,044	32	101
7	0,017	34	107
8	0,017	36	113
9	0,016	38	119
10	0,022	40	126
11	0,021	42	132
12	0,036	44	138
13	0,04	46	145
14	0,045	48	151
15	0,036	50	157
16	0,058	52	163
17	0,051	54	170
18	0,044	56	176
19	0,064	58	182
20	0,044	60	188
21	0,046	62	195
22	0,049	64	201
23	0,056	66	207
24	0,059	68	214
25	0,04	70	220
26	0,053	72	226
27	0,049	74	232
28	0,05	76	239
29	0,058	78	245
30	0,067	80	251
31	0,048	82	258
32	0,041	84	264
33	0,046	86	270
34	0,055	88	276
35	0,241	90	283

Tabela A 1 - Medição do perfil h(mm) usinado para a condição SECO 1.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,618	92	289
37	0,719	94	295
38	0,852	96	302
39	0,869	98	308
40	0,874	100	314
41	0,875	102	320
42	0,879	104	327
43	0,898	106	333
44	0,899	108	339
45	0,924	110	346
46	0,93	112	352
47	0,928	114	358
48	0,929	116	364
49	0,939	118	371
50	0,953	120	377
51	0,974	122	383
52	0,96	124	390
53	0,967	126	396
54	0,964	128	402
55	0,964	130	408
56	0,974	132	415
57	0,973	134	421
58	0,973	136	427
59	0,983	138	434
60	0,985	140	440
61	0,983	142	446
62	0,983	144	452
63	0,985	146	459
64	0,985	148	465
65	0,985	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,004	24	75
3	0,012	26	82
4	0,017	28	88
5	0,004	30	94
6	0,004	32	101
7	0,032	34	107
8	-0,005	36	113
9	-0,001	38	119
10	0,013	40	126
11	0,009	42	132
12	-0,006	44	138
13	0,023	46	145
14	0,015	48	151
15	0,021	50	157
16	0,002	52	163
17	0,016	54	170
18	0,021	56	176
19	0,021	58	182
20	0,031	60	188
21	0,009	62	195
22	0,01	64	201
23	0,015	66	207
24	0,022	68	214
25	0,014	70	220
26	0,015	72	226
27	0,012	74	232
28	0,02	76	239
29	0,011	78	245
30	0,009	80	251
31	0,018	82	258
32	0,269	84	264
33	0,467	86	270
34	0,653	88	276
35	0,779	90	283

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,828	92	289
37	0,831	94	295
38	0,832	96	302
39	0,842	98	308
40	0,855	100	314
41	0,861	102	320
42	0,87	104	327
43	0,875	106	333
44	0,877	108	339
45	0,886	110	346
46	0,894	112	352
47	0,901	114	358
48	0,91	116	364
49	0,907	118	371
50	0,908	120	377
51	0,917	122	383
52	0,925	124	390
53	0,932	126	396
54	0,929	128	402
55	0,928	130	408
56	0,932	132	415
57	0,939	134	421
58	0,947	136	427
59	0,945	138	434
60	0,949	140	440
61	0,955	142	446
62	0,958	144	452
63	0,955	146	459
64	0,958	148	465
65	0,958	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,006	24	75
3	0,008	26	82
4	0,008	28	88
5	0,006	30	94
6	0,004	32	101
7	0,043	34	107
8	0,01	36	113
9	0,023	38	119
10	0,012	40	126
11	0,015	42	132
12	0,008	44	138
13	0,019	46	145
14	0,015	48	151
15	0,013	50	157
16	0,008	52	163
17	0,016	54	170
18	0,01	56	176
19	0,006	58	182
20	0,02	60	188
21	0,012	62	195
22	0,011	64	201
23	0,015	66	207
24	0,012	68	214
25	0,025	70	220
26	0,014	72	226
27	0,008	74	232
28	0,036	76	239
29	0,171	78	245
30	0,391	80	251
31	0,633	82	258
32	0,765	84	264
33	0,806	86	270
34	0,84	88	276
35	0,848	90	283

Tabela A 3 - Medição do perfil h(mm) usinado para a condição SECO 3.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,852	92	289
37	0,863	94	295
38	0,865	96	302
39	0,87	98	308
40	0,875	100	314
41	0,882	102	320
42	0,89	104	327
43	0,9	106	333
44	0,901	108	339
45	0,905	110	346
46	0,91	112	352
47	0,913	114	358
48	0,916	116	364
49	0,918	118	371
50	0,92	120	377
51	0,923	122	383
52	0,929	124	390
53	0,93	126	396
54	0,934	128	402
55	0,936	130	408
56	0,938	132	415
57	0,941	134	421
58	0,943	136	427
59	0,946	138	434
60	0,947	140	440
61	0,954	142	446
62	0,952	144	452
63	0,954	146	459
64	0,946	148	465
65	0,946	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,026	24	75
3	0,027	26	82
4	0,05	28	88
5	0,051	30	94
6	0,058	32	101
7	0,088	34	107
8	0,081	36	113
9	0,083	38	119
10	0,083	40	126
11	0,082	42	132
12	0,084	44	138
13	0,084	46	145
14	0,087	48	151
15	0,105	50	157
16	0,105	52	163
17	0,105	54	170
18	0,122	56	176
19	0,139	58	182
20	0,141	60	188
21	0,145	62	195
22	0,146	64	201
23	0,146	66	207
24	0,156	68	214
25	0,16	70	220
26	0,16	72	226
27	0,161	74	232
28	0,304	76	239
29	0,532	78	245
30	0,695	80	251
31	0,754	82	258
32	0,753	84	264
33	0,755	86	270
34	0,76	88	276
35	0,769	90	283

Tabela A 4 - Medição do perfil h(mm) usinado para a condição SECO 4.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,77	92	289
37	0,774	94	295
38	0,781	96	302
39	0,787	98	308
40	0,788	100	314
41	0,79	102	320
42	0,792	104	327
43	0,795	106	333
44	0,798	108	339
45	0,8	110	346
46	0,801	112	352
47	0,802	114	358
48	0,803	116	364
49	0,803	118	371
50	0,804	120	377
51	0,803	122	383
52	0,806	124	390
53	0,808	126	396
54	0,808	128	402
55	0,809	130	408
56	0,809	132	415
57	0,812	134	421
58	0,815	136	427
59	0,818	138	434
60	0,819	140	440
61	0,82	142	446
62	0,82	144	452
63	0,82	146	459
64	0,822	148	465
65	0,822	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0	24	75
3	0,031	26	82
4	0,042	28	88
5	0,043	30	94
6	0,043	32	101
7	0,05	34	107
8	0,058	36	113
9	0,058	38	119
10	0,067	40	126
11	0,06	42	132
12	0,07	44	138
13	0,074	46	145
14	0,08	48	151
15	0,09	50	157
16	0,092	52	163
17	0,122	54	170
18	0,122	56	176
19	0,135	58	182
20	0,135	60	188
21	0,141	62	195
22	0,14	64	201
23	0,147	66	207
24	0,148	68	214
25	0,148	70	220
26	0,17	72	226
27	0,346	74	232
28	0,56	76	239
29	0,704	78	245
30	0,754	80	251
31	0,765	82	258
32	0,778	84	264
33	0,78	86	270
34	0,788	88	276
35	0,797	90	283

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,8	92	289
37	0,805	94	295
38	0,809	96	302
39	0,81	98	308
40	0,814	100	314
41	0,806	102	320
42	0,818	104	327
43	0,82	106	333
44	0,823	108	339
45	0,829	110	346
46	0,83	112	352
47	0,833	114	358
48	0,836	116	364
49	0,837	118	371
50	0,838	120	377
51	0,838	122	383
52	0,839	124	390
53	0,84	126	396
54	0,844	128	402
55	0,844	130	408
56	0,845	132	415
57	0,846	134	421
58	0,85	136	427
59	0,851	138	434
60	0,851	140	440
61	0,852	142	446
62	0,852	144	452
63	0,853	146	459
64	0,853	148	465
65	0,853	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,007	24	75
3	0,011	26	82
4	0,011	28	88
5	0,022	30	94
6	0,02	32	101
7	0,032	34	107
8	0,028	36	113
9	0,031	38	119
10	0,024	40	126
11	0,024	42	132
12	0,024	44	138
13	0,024	46	145
14	0,03	48	151
15	0,035	50	157
16	0,05	52	163
17	0,05	54	170
18	0,053	56	176
19	0,054	58	182
20	0,06	60	188
21	0,074	62	195
22	0,094	64	201
23	0,094	66	207
24	0,094	68	214
25	0,094	70	220
26	0,094	72	226
27	0,094	74	232
28	0,347	76	239
29	0,608	78	245
30	0,694	80	251
31	0,714	82	258
32	0,742	84	264
33	0,749	86	270
34	0,753	88	276
35	0,755	90	283

Tabela A 6 - Medição do perfil h(mm) usinado para a condição SECO 6.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,76	92	289
37	0,76	94	295
38	0,762	96	302
39	0,77	98	308
40	0,775	100	314
41	. 0,782	102	320
42	0,784	104	327
43	0,785	106	333
44	0,79	108	339
45	0,79	110	346
46	0,795	112	352
47	0,796	114	358
48	0,797	116	364
49	0,798	118	371
50	0,8	120	377
51	. 0,8	122	383
52	0,802	124	390
53	0,803	126	396
54	0,803	128	402
55	0,803	130	408
56	0,805	132	415
57	0,805	134	421
58	0,806	136	427
59	0,81	138	434
60	0,815	140	440
61	. 0,815	142	446
62	0,82	144	452
63	0,822	146	459
64	0,822	148	465
65	0,822	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	-0,005	24	75
3	-0,005	26	82
4	-0,003	28	88
5	0,02	30	94
6	-0,002	32	101
7	0,021	34	107
8	0,009	36	113
9	0,012	38	119
10	0,02	40	126
11	0,009	42	132
12	0,004	44	138
13	0,008	46	145
14	0,009	48	151
15	0,007	50	157
16	0,012	52	163
17	0,005	54	170
18	0,012	56	176
19	0,007	58	182
20	0,016	60	188
21	0,019	62	195
22	0,012	64	201
23	0,011	66	207
24	0,013	68	214
25	0,02	70	220
26	0,015	72	226
27	0,02	74	232
28	0,025	76	239
29	0,026	78	245
30	0,024	80	251
31	0,027	82	258
32	0,027	84	264
33	0,022	86	270
34	0,033	88	276
35	0,025	90	283

Tabela A 7 - Medição do perfil h(mm) usinado para a condição SF1.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,048	92	289
37	0,034	94	295
38	0,2	96	302
39	0,504	98	308
40	0,708	100	314
41	0,788	102	320
42	0,804	104	327
43	0,813	106	333
44	0,815	108	339
45	0,823	110	346
46	0,826	112	352
47	0,832	114	358
48	0,837	116	364
49	0,841	118	371
50	0,842	120	377
51	0,845	122	383
52	0,849	124	390
53	0,851	126	396
54	0,852	128	402
55	0,855	130	408
56	0,857	132	415
57	0,858	134	421
58	0,859	136	427
59	0,86	138	434
60	0,861	140	440
61	0,862	142	446
62	0,864	144	452
63	0,858	146	459
64	0,85	148	465
65	0,85	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,004	24	75
3	0,006	26	82
4	0,006	28	88
5	-0,001	30	94
6	0,015	32	101
7	0,017	34	107
8	0,005	36	113
9	0,024	38	119
10	0,008	40	126
11	0,015	42	132
12	0,022	44	138
13	0,04	46	145
14	0,019	48	151
15	0,027	50	157
16	0,016	52	163
17	0,028	54	170
18	0,027	56	176
19	0,031	58	182
20	0,033	60	188
21	0,041	62	195
22	0,031	64	201
23	0,042	66	207
24	0,043	68	214
25	0,034	70	220
26	0,035	72	226
27	0,035	74	232
28	0,04	76	239
29	0,036	78	245
30	0,042	80	251
31	0,046	82	258
32	0,047	84	264
33	0,04	86	270
34	0,049	88	276
35	0,061	90	283

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	5 0 <i>,</i> 043	92	289
37	7 0,067	94	295
38	3 0,49	96	302
39	9 0,72	98	308
40	0,835	100	314
43	L 0,851	102	320
42	2 0,858	104	327
43	3 0,865	106	333
44	1 0,87	108	339
45	5 0,879	110	346
46	6 0,882	112	352
47	7 0,885	114	358
48	3 0,888	116	364
49	0,891	118	371
50	0,894	120	377
53	L 0,899	122	383
52	2 0,899	124	390
53	3 0,901	126	396
54	1 0,902	128	402
55	5 0,904	130	408
56	6 0,904	132	415
57	7 0,907	134	421
58	3 0,906	136	427
59	0,908	138	434
60	0,907	140	440
63	L 0,907	142	446
62	2 0,904	144	452
63	3 0,9	146	459
64	1 0,888	148	465
65	5 0,888	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	-0,003	24	75
3	-0,002	26	82
4	0	28	88
5	0,001	30	94
6	0,003	32	101
7	0,004	34	107
8	0,002	36	113
9	0,002	38	119
10	0,006	40	126
11	0,003	42	132
12	0,005	44	138
13	0,004	46	145
14	0,007	48	151
15	0,008	50	157
16	0,005	52	163
17	0,009	54	170
18	0,01	56	176
19	0,006	58	182
20	0,009	60	188
21	0,01	62	195
22	0,01	64	201
23	0,015	66	207
24	0,013	68	214
25	0,014	70	220
26	0,016	72	226
27	0,018	74	232
28	0,018	76	239
29	0,022	78	245
30	0,025	80	251
31	0,023	82	258
32	0,024	84	264
33	0,025	86	270
34	0,026	88	276
35	0,082	90	283

Tabela A 9 - Medição do perfil h(mm) usinado para a condição SF3.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,39	92	289
37	0,631	94	295
38	0,765	96	302
39	0,8	98	308
40	0,809	100	314
41	0,823	102	320
42	0,822	104	327
43	0,831	106	333
44	0,835	108	339
45	0,838	110	346
46	0,843	112	352
47	0,847	114	358
48	0,849	116	364
49	0,851	118	371
50	0,854	120	377
51	0,859	122	383
52	0,862	124	390
53	0,863	126	396
54	0,864	128	402
55	0,865	130	408
56	0,866	132	415
57	0,868	134	421
58	0,868	136	427
59	0,869	138	434
60	0,869	140	440
61	0,87	142	446
62	0,87	144	452
63	0,868	146	459
64	0,86	148	465
65	0,86	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0	24	75
3	0,002	26	82
4	0,002	28	88
5	0,022	30	94
6	0,021	32	101
7	0,02	34	107
8	0,02	36	113
9	0,021	38	119
10	0,022	40	126
11	0,022	42	132
12	0,022	44	138
13	0,023	46	145
14	0,025	48	151
15	0,026	50	157
16	0,027	52	163
17	0,027	54	170
18	0,038	56	176
19	0,038	58	182
20	0,047	60	188
21	0,045	62	195
22	0,046	64	201
23	0,046	66	207
24	0,046	68	214
25	0,049	70	220
26	0,05	72	226
27	0,056	74	232
28	0,064	76	239
29	0,066	78	245
30	0,067	80	251
31	0,067	82	258
32	0,07	84	264
33	0,072	86	270
34	0,398	88	276
35	0,737	90	283

Tabela A 10	- Medição d	lo perfil h(mm) usinado para a	a condição SF4.
		1	, <u> </u>	3

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,848	92	289
37	0,854	94	295
38	0,854	96	302
39	0,854	98	308
40	0,858	100	314
41	0,859	102	320
42	0,866	104	327
43	0,869	106	333
44	0,87	108	339
45	0,874	110	346
46	0,88	112	352
47	0,881	114	358
48	0,883	116	364
49	0,884	118	371
50	0,887	120	377
51	0,892	122	383
52	0,892	124	390
53	0,894	126	396
54	0,892	128	402
55	0,895	130	408
56	0,893	132	415
57	0,89	134	421
58	0,894	136	427
59	0,892	138	434
60	0,895	140	440
61	0,895	142	446
62	0,895	144	452
63	0,895	146	459
64	0,895	148	465
65	0,895	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,002	24	75
3	0,001	26	82
4	0,003	28	88
5	0,004	30	94
6	0,036	32	101
7	0,04	34	107
8	0,04	36	113
9	0,041	38	119
10	0,04	40	126
11	0,041	42	132
12	0,042	44	138
13	0,043	46	145
14	0,046	48	151
15	0,047	50	157
16	0,051	52	163
17	0,065	54	170
18	0,063	56	176
19	0,063	58	182
20	0,073	60	188
21	0,085	62	195
22	0,085	64	201
23	0,085	66	207
24	0,085	68	214
25	0,085	70	220
26	0,096	72	226
27	0,121	74	232
28	0,134	76	239
29	0,153	78	245
30	0,151	80	251
31	0,151	82	258
32	0,255	84	264
33	0,494	86	270
34	0,685	88	276
35	0,736	90	283

Ponto		h (mm)	Diâmetro (mm)	Vc (mm/min)
3	6	0,744	92	289
3	7	0,756	94	295
3	8	0,76	96	302
3	9	0,766	98	308
4	0	0,77	100	314
4	1	0,78	102	320
4	2	0,784	104	327
4	3	0,785	106	333
4	4	0,785	108	339
4	5	0,786	110	346
4	6	0,788	112	352
4	7	0,792	114	358
4	8	0,795	116	364
4	9	0,799	118	371
5	0	0,8	120	377
5	1	0,802	122	383
5	2	0,803	124	390
5	3	0,81	126	396
5	4	0,815	128	402
5	5	0,817	130	408
5	6	0,819	132	415
5	7	0,824	134	421
5	8	0,825	136	427
5	9	0,827	138	434
6	0	0,832	140	440
6	1	0,833	142	446
6	2	0,833	144	452
6	3	0,835	146	459
6	4	0,835	148	465
6	5	0,835	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,001	24	75
3	0,001	26	82
4	0,013	28	88
5	0,016	30	94
6	0,017	32	101
7	0,017	34	107
8	0,017	36	113
9	0,017	38	119
10	0,018	40	126
11	0,04	42	132
12	0,043	44	138
13	0,043	46	145
14	0,043	48	151
15	0,043	50	157
16	0,047	52	163
17	0,049	54	170
18	0,049	56	176
19	0,06	58	182
20	0,053	60	188
21	0,053	62	195
22	0,053	64	201
23	0,054	66	207
24	0,064	68	214
25	0,067	70	220
26	0,069	72	226
27	0,082	74	232
28	0,088	76	239
29	0,091	78	245
30	0,091	80	251
31	0,091	82	258
32	0,091	84	264
33	0,091	86	270
34	0,101	88	276
35	0,162	90	283

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,45	92	289
37	0,802	94	295
38	0,803	96	302
39	0,81	98	308
40	0,815	100	314
41	0,817	102	320
42	0,819	104	327
43	0,824	106	333
44	0,825	108	339
45	0,827	110	346
46	0,832	112	352
47	0,833	114	358
48	0,833	116	364
49	0,835	118	371
50	0,835	120	377
51	0,84	122	383
52	0,845	124	390
53	0,852	126	396
54	0,854	128	402
55	0,857	130	408
56	0,86	132	415
57	0,861	134	421
58	0,864	136	427
59	0,868	138	434
60	0,868	140	440
61	0,871	142	446
62	0,874	144	452
63	0,876	146	459
64	0,876	148	465
65	0,876	150	471

Tabela A 12 - Medição do perfil h(mm) usinado para a condição SF6.

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	-0,007	24	75
3	0,015	26	82
4	-0,004	28	88
5	-0,01	30	94
6	0	32	101
7	0,003	34	107
8	0,01	36	113
9	0,007	38	119
10	0,001	40	126
11	0,006	42	132
12	0,002	44	138
13	0,007	46	145
14	0,019	48	151
15	0,008	50	157
16	0,001	52	163
17	0,017	54	170
18	0,001	56	176
19	0,006	58	182
20	0,014	60	188
21	0,006	62	195
22	0,013	64	201
23	0,015	66	207
24	0,008	68	214
25	0,014	70	220
26	0,01	72	226
27	0,013	74	232
28	0,001	76	239
29	0,016	78	245
30	0,014	80	251
31	0,022	82	258
32	0,018	84	264
33	0,035	86	270
34	0,01	88	276
35	0,02	90	283

Ponto h (mm) Diâmetro (mm) Vc (mm/min) 0,058 0,09 0,13 0,272 0,504 0,682 0,853 0,869 0,88 0,89 0,902 0,912 0,917 0,924 0,93 0,932 0,939 0,943 0,944 0,947 0,95 0,954 0,955 0,959 0,963 0,965 0,965 0,964 0,964 0,964

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	-0,006	24	75
3	0,002	26	82
4	0	28	88
5	0,009	30	94
6	0,009	32	101
7	0,017	34	107
8	0,013	36	113
9	0,018	38	119
10	0,008	40	126
11	0,002	42	132
12	0,013	44	138
13	0,009	46	145
14	0,014	48	151
15	0,008	50	157
16	0,008	52	163
17	0,01	54	170
18	0,012	56	176
19	0,01	58	182
20	0,02	60	188
21	0,015	62	195
22	0,014	64	201
23	0,02	66	207
24	0,023	68	214
25	0,025	70	220
26	0,02	72	226
27	0,02	74	232
28	0,017	76	239
29	0,018	78	245
30	0,018	80	251
31	0,025	82	258
32	0,023	84	264
33	0,038	86	270
34	0,078	88	276
35	0,22	90	283

Tabela A 14 - Medição do perfil h(mm) usinado para a condição SS2.

Ponto h (mm) Diâmetro (mm) Vc (mm/min) 0,438 0,639 0,725 0,75 0,756 0,764 0,765 0,785 0,79 0,803 0,804 0,806 0,809 0,807 0,809 0,811 0,813 0,813 0,814 0,817 0,819 0,819 0,817 0,818 0,82 0,819 0,818 0,82 0,813 0,813

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	-0,008	24	75
3	-0,003	26	82
4	-0,008	28	88
5	-0,006	30	94
6	-0,003	32	101
7	-0,005	34	107
8	0,002	36	113
9	-0,002	38	119
10	-0,002	40	126
11	0,002	42	132
12	-0,007	44	138
13	0	46	145
14	-0,008	48	151
15	-0,001	50	157
16	0	52	163
17	-0,002	54	170
18	-0,002	56	176
19	0,005	58	182
20	0,01	60	188
21	0,012	62	195
22	0,001	64	201
23	0,007	66	207
24	0,012	68	214
25	0,015	70	220
26	0,014	72	226
27	0,02	74	232
28	0,015	76	239
29	0,021	78	245
30	0,024	80	251
31	0,027	82	258
32	0,033	84	264
33	0,138	86	270
34	0,283	88	276
35	0,498	90	283

Ponto h (mm) Diâmetro (mm) Vc (mm/min) 0,683 0,765 0,778 0,786 0,793 0,8 0,801 0,802 0,804 0,809 0,81 0,812 0,815 0,816 0,817 0,818 0,82 0,82 0,821 0,816 0,82 0,817 0,817 0,815 0,82 0,821 0,817 0,82 0,818 0,818

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,014	24	75
3	0,018	26	82
4	0,024	28	88
5	0,024	30	94
6	0,029	32	101
7	0,03	34	107
8	0,027	36	113
9	0,028	38	119
10	0,028	40	126
11	0,03	42	132
12	0,038	44	138
13	0,041	46	145
14	0,053	48	151
15	0,054	50	157
16	0,057	52	163
17	0,064	54	170
18	0,066	56	176
19	0,074	58	182
20	0,082	60	188
21	0,077	62	195
22	0,077	64	201
23	0,078	66	207
24	0,082	68	214
25	0,083	70	220
26	0,081	72	226
27	0,081	74	232
28	0,07	76	239
29	0,07	78	245
30	0,105	80	251
31	0,336	82	258
32	0,559	84	264
33	0,708	86	270
34	0,768	88	276
35	0,82	90	283

Tabela A 16 -	· Medição do	perfil h(mm)) usinado para	a condição SS4.
	5	1 \	· • •	3

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,836	92	289
37	0,839	94	295
38	0,841	96	302
39	0,847	98	308
40	0,853	100	314
41	0,858	102	320
42	0,863	104	327
43	0,866	106	333
44	0,87	108	339
45	0,878	110	346
46	0,883	112	352
47	0,885	114	358
48	0,886	116	364
49	0,888	118	371
50	0,89	120	377
51	0,892	122	383
52	0,892	124	390
53	0,892	126	396
54	0,892	128	402
55	0,892	130	408
56	0,892	132	415
57	0,892	134	421
58	0,892	136	427
59	0,924	138	434
60	0,908	140	440
61	0,924	142	446
62	0,951	144	452
63	0,924	146	459
64	0,951	148	465
65	0,951	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0	24	75
3	0	26	82
4	0,002	28	88
5	0,019	30	94
6	0,019	32	101
7	0,02	34	107
8	0,019	36	113
9	0,02	38	119
10	0,025	40	126
11	0,023	42	132
12	0,02	44	138
13	0,027	46	145
14	0,026	48	151
15	0,025	50	157
16	0,026	52	163
17	0,024	54	170
18	0,025	56	176
19	0,024	58	182
20	0,024	60	188
21	0,024	62	195
22	0,025	64	201
23	0,025	66	207
24	0,025	68	214
25	0,025	70	220
26	0,025	72	226
27	0,025	74	232
28	0,025	76	239
29	0,025	78	245
30	0,062	80	251
31	0,062	82	258
32	0,062	84	264
33	0,25	86	270
34	0,47	88	276
35	0,701	90	283

Ponto h (mm) Diâmetro (mm) Vc (mm/min) 0,718 0,721 0,736 0,749 0,754 0,765 0,775 0,788 0,802 0,804 0,819 0,833 0,839 0,847 0,859 0,859 0,861 0,87 0,871 0,872 0,873 0,875 0,883 0,871 0,872 0,873 0,875 0,883 0,883 0,883

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0	24	75
3	0,002	26	82
4	0,019	28	88
5	0,022	30	94
6	0,024	32	101
7	0,026	34	107
8	0,025	36	113
9	0,025	38	119
10	0,025	40	126
11	0,025	42	132
12	0,026	44	138
13	0,035	46	145
14	0,035	48	151
15	0,035	50	157
16	0,035	52	163
17	0,044	54	170
18	0,044	56	176
19	0,044	58	182
20	0,044	60	188
21	0,044	62	195
22	0,045	64	201
23	0,042	66	207
24	0,046	68	214
25	0,048	70	220
26	0,049	72	226
27	0,051	74	232
28	0,052	76	239
29	0,086	78	245
30	0,086	80	251
31	0,150	82	258
32	0,224	84	264
33	0,224	86	270
34	0,324	88	276
35	0,399	90	283

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,446	92	289
37	0,461	94	295
38	0,672	96	302
39	0,787	98	308
40	0,847	100	314
41	0,855	102	320
42	0,862	104	327
43	0,867	106	333
44	0,870	108	339
45	0,877	110	346
46	0,881	112	352
47	0,883	114	358
48	0,886	116	364
49	0,888	118	371
50	0,891	120	377
51	0,896	122	383
52	0,896	124	390
53	0,898	126	396
54	0,897	128	402
55	0,900	130	408
56	0,899	132	415
57	0,899	134	421
58	0,900	136	427
59	0,900	138	434
60	0,901	140	440
61	0,901	142	446
62	0,900	144	452
63	0,898	146	459
64	0,892	148	465
65	0,892	150	471

Fonte: Autor, 2014.
Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	-0,007	24	75
3	-0,012	26	82
4	-0,008	28	88
5	-0,008	30	94
6	-0,008	32	101
7	0,001	34	107
8	-0,004	36	113
9	0,002	38	119
10	-0,005	40	126
11	-0,003	42	132
12	0,001	44	138
13	-0,001	46	145
14	0,006	48	151
15	0,004	50	157
16	0,014	52	163
17	0,02	54	170
18	0,021	56	176
19	0,003	58	182
20	-0,005	60	188
21	0,015	62	195
22	0,013	64	201
23	0,016	66	207
24	0,021	68	214
25	0,021	70	220
26	0,019	72	226
27	0,02	74	232
28	0,05	76	239
29	0,024	78	245
30	0,019	80	251
31	0,041	82	258
32	0,052	84	264
33	0,05	86	270
34	0,056	88	276
35	0,048	90	283

Tabela A 19 - Medição do perfil h(mm) usinado para a condição SF/SS1.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,029	92	289
37	0,088	94	295
38	0,374	96	302
39	0,656	98	308
40	0,782	100	314
41	0,812	102	320
42	0,817	104	327
43	0,822	106	333
44	0,826	108	339
45	0,828	110	346
46	0,831	112	352
47	0,836	114	358
48	0,837	116	364
49	0,838	118	371
50	0,843	120	377
51	0,849	122	383
52	0,852	124	390
53	0,852	126	396
54	0,853	128	402
55	0,853	130	408
56	0,854	132	415
57	0,856	134	421
58	0,857	136	427
59	0,857	138	434
60	0,858	140	440
61	0,858	142	446
62	0,859	144	452
63	0,856	146	459
64	0,844	148	465
65	0,844	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,01	24	75
3	0,008	26	82
4	0,007	28	88
5	0,002	30	94
6	0,015	32	101
7	0,013	34	107
8	0,01	36	113
9	0,018	38	119
10	0,028	40	126
11	-0,001	42	132
12	0,013	44	138
13	0,015	46	145
14	0,04	48	151
15	0,02	50	157
16	0,012	52	163
17	0,022	54	170
18	0,031	56	176
19	0,014	58	182
20	0,019	60	188
21	0,01	62	195
22	0,015	64	201
23	0,022	66	207
24	0,021	68	214
25	0,015	70	220
26	0,02	72	226
27	0,022	74	232
28	0,043	76	239
29	0,025	78	245
30	0,027	80	251
31	0,028	82	258
32	0,03	84	264
33	0,026	86	270
34	0,036	88	276
35	0,034	90	283

Tubela 11 20 Tricalção do per in n(inin) abinado para a condição 51/552	Tabela A 20 - Medie	ção do perfil h(mm) usinado para a	condição SF/SS2.
---	---------------------	--------------------	------------------	------------------

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,02	92	289
37	0,055	94	295
38	0,232	96	302
39	0,468	98	308
40	0,693	100	314
41	0,82	102	320
42	0,839	104	327
43	0,841	106	333
44	0,847	108	339
45	0,853	110	346
46	0,858	112	352
47	0,863	114	358
48	0,866	116	364
49	0,87	118	371
50	0,878	120	377
51	0,883	122	383
52	0,885	124	390
53	0,886	126	396
54	0,888	128	402
55	0,89	130	408
56	0,892	132	415
57	0,892	134	421
58	0,892	136	427
59	0,892	138	434
60	0,892	140	440
61	0,892	142	446
62	0,892	144	452
63	0,892	146	459
64	0,892	148	465
65	0,892	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,001	24	75
3	-0,002	26	82
4	-0,009	28	88
5	-0,005	30	94
6	0,01	32	101
7	0,015	34	107
8	0,01	36	113
9	0,011	38	119
10	0,008	40	126
11	0,001	42	132
12	0,02	44	138
13	0,006	46	145
14	0,004	48	151
15	-0,002	50	157
16	0,011	52	163
17	0,017	54	170
18	0,016	56	176
19	0,023	58	182
20	0,016	60	188
21	0,018	62	195
22	0,016	64	201
23	0,018	66	207
24	0,025	68	214
25	0,017	70	220
26	0,019	72	226
27	0,03	74	232
28	0,025	76	239
29	0,033	78	245
30	0,034	80	251
31	0,024	82	258
32	0,039	84	264
33	0,058	86	270
34	0,054	88	276
35	0,031	90	283

Tabela A 21 - Medição do perfil h(mm) usinado para a condição SF/SS3.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,035	92	289
37	0,045	94	295
38	0,055	96	302
39	0,24	98	308
40	0,47	100	314
41	0,73	102	320
42	2 0,83	104	327
43	0,833	106	333
44	0,84	108	339
45	0,845	110	346
46	0,852	112	352
47	0,854	114	358
48	0,857	116	364
49	0,86	118	371
50	0,861	120	377
51	0,864	122	383
52	0,868	124	390
53	0,868	126	396
54	0,871	128	402
55	0,874	130	408
56	0,876	132	415
57	0,876	134	421
58	3 0,88	136	427
59	0,881	138	434
60	0,884	140	440
61	0,884	142	446
62	0,883	144	452
63	0,886	146	459
64	0,884	148	465
65	0,884	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	-0,007	24	75
3	-0,012	26	82
4	-0,008	28	88
5	-0,008	30	94
6	-0,008	32	101
7	0,001	34	107
8	-0,004	36	113
9	0,002	38	119
10	-0,005	40	126
11	-0,003	42	132
12	0,001	44	138
13	-0,001	46	145
14	0,006	48	151
15	0,004	50	157
16	0,014	52	163
17	0,02	54	170
18	0,021	56	176
19	0,003	58	182
20	-0,005	60	188
21	0,015	62	195
22	0,013	64	201
23	0,016	66	207
24	0,021	68	214
25	0,021	70	220
26	0,019	72	226
27	0,02	74	232
28	0,05	76	239
29	0,024	78	245
30	0,019	80	251
31	0,041	82	258
32	0,052	84	264
33	0,05	86	270
34	0,056	88	276
35	0,048	90	283

Tabela A 22 - Medição do perfil h(mm) usinado para a condição SF/SS4.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,029	92	289
37	0,088	94	295
38	0,374	96	302
39	0,656	98	308
40	0,782	100	314
41	0,812	102	320
42	0,817	104	327
43	0,822	106	333
44	0,826	108	339
45	0,828	110	346
46	0,831	112	352
47	0,836	114	358
48	0,837	116	364
49	0,838	118	371
50	0,843	120	377
51	0,849	122	383
52	0,852	124	390
53	0,852	126	396
54	0,853	128	402
55	0,853	130	408
56	0,854	132	415
57	0,856	134	421
58	0,857	136	427
59	0,857	138	434
60	0,858	140	440
61	0,858	142	446
62	0,859	144	452
63	0,856	146	459
64	0,844	148	465
65	0,844	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,01	24	75
3	0,008	26	82
4	0,007	28	88
5	0,002	30	94
6	0,015	32	101
7	0,013	34	107
8	0,01	36	113
9	0,018	38	119
10	0,028	40	126
11	-0,001	42	132
12	0,013	44	138
13	0,015	46	145
14	0,04	48	151
15	0,02	50	157
16	0,012	52	163
17	0,022	54	170
18	0,031	56	176
19	0,014	58	182
20	0,019	60	188
21	0,01	62	195
22	0,015	64	201
23	0,022	66	207
24	0,021	68	214
25	0,015	70	220
26	0,02	72	226
27	0,022	74	232
28	0,043	76	239
29	0,025	78	245
30	0,027	80	251
31	0,028	82	258
32	0,03	84	264
33	0,026	86	270
34	0,036	88	276
35	0,034	90	283

Tabela A 23 - Medicão	do perfil h(mm) usinado	para a condição SF/SS5.
		P - - - - - - - - - -

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,02	92	289
37	0,055	94	295
38	0,232	96	302
39	0,468	98	308
40	0,693	100	314
41	0,82	102	320
42	0,839	104	327
43	0,841	106	333
44	0,847	108	339
45	0,853	110	346
46	0,858	112	352
47	0,863	114	358
48	0,866	116	364
49	0,87	118	371
50	0,878	120	377
51	0,883	122	383
52	0,885	124	390
53	0,886	126	396
54	0,888	128	402
55	0,89	130	408
56	0,892	132	415
57	0,892	134	421
58	0,892	136	427
59	0,892	138	434
60	0,892	140	440
61	0,892	142	446
62	0,892	144	452
63	0,892	146	459
64	0,892	148	465
65	0,892	150	471

Fonte: Autor, 2014.

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
1	0	22	69
2	0,001	24	75
3	-0,002	26	82
4	-0,009	28	88
5	-0,005	30	94
6	0,01	32	101
7	0,015	34	107
8	0,01	36	113
9	0,011	38	119
10	0,008	40	126
11	0,001	42	132
12	0,02	44	138
13	0,006	46	145
14	0,004	48	151
15	-0,002	50	157
16	0,011	52	163
17	0,017	54	170
18	0,016	56	176
19	0,023	58	182
20	0,016	60	188
21	0,018	62	195
22	0,016	64	201
23	0,018	66	207
24	0,025	68	214
25	0,017	70	220
26	0,019	72	226
27	0,03	74	232
28	0,025	76	239
29	0,033	78	245
30	0,034	80	251
31	0,024	82	258
32	0,039	84	264
33	0,058	86	270
34	0,054	88	276
35	0,031	90	283

Ponto	h (mm)	Diâmetro (mm)	Vc (mm/min)
36	0,035	92	289
37	0,045	94	295
38	0,055	96	302
39	0,24	98	308
40	0,47	100	314
41	0,73	102	320
42	2 0,83	104	327
43	0,833	106	333
44	0,84	108	339
45	0,845	110	346
46	0,852	112	352
47	0,854	114	358
48	0,857	116	364
49	0,86	118	371
50	0,861	120	377
51	0,864	122	383
52	0,868	124	390
53	0,868	126	396
54	0,871	128	402
55	0,874	130	408
56	0,876	132	415
57	0,876	134	421
58	3 0,88	136	427
59	0,881	138	434
60	0,884	140	440
61	0,884	142	446
62	0,883	144	452
63	0,886	146	459
64	0,884	148	465
65	0,884	150	471

Fonte: Autor, 2014.