
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Monografia: 

 

Projeto de uma Arquitetura de Hardware e 

Software para um Veículo Aéreo Não-

Tripulado para Supervisão de Instalações de 

Petróleo 
 

 

 

 

 

Djalma Teixeira Maranhão Neto 

 

 

 

 

 

 

 

Natal, Agosto de 2009 





Dedico esse trabalho a meus
amados pais, não apenas em

reconhecimento por terem me dado
vida. Mas, por sempre incutir em
mim a necessidade de lutar pelos

meus sonhos. E por estarem sempre
ao meu lado nos momentos alegres e

especialmente nos momentos
difícies. O seu amor e sua dedicação

são sem dúvida o combustível das
minhas realizações.





Agradecimentos

Ao meu orientador e ao meu co-orientador, professores Pabloe Adelardo, sou grato pela
orientação e amizade.

Aos colegas João Paulo e Gutemberg pelo apoio ao longo desse trabalho.

Aos demais colegas do Laboratório de Robótica pelas sugestões e críticas.

A minha família pela compreensão e apoio ao longo dessa jornada.

A ANP, pelo apoio financeiro.





Resumo

Um robô é um sistema heterogêneo composto de diversos elementos de hardware e soft-
ware. Para que esse sistema funcione adequadamente é fundamental estabelecer uma
arquitetura que modele suas diversas inter-relações. Assim, o objetivo do presente tra-
balho é projetar uma arquitetura de hardware e software que será utilizada num veículo
aéreo não-tripulado (VANT).

Esse tipo de robô possui requisitos bem específicos que são determinantes no projeto
de sua arquitetura. Por exemplo, o VANT proposto no projeto AEROPETRO utilizará
fortemente técnicas de visão computacional, o que praticamente inviabiliza a utilização
de sistemas operacionais de tempo real, pois, para atender as garantias de tempo os drivers
das câmeras, precisam ser projetados para esse tipo de sistema, o que não acontece na
prática. Por outro lado, controlar um sistema desse tipo semobedecer certas restrições
temporais ou sob risco de falhas de comunicação poderia levar a situações catastróficas.
Por esses motivos é necessário propor uma arquitetura que seadeque as características
dessa aplicação.

A arquitetura proposta nesse trabalho segue o modelo mestre-escravo e utiliza o pro-
tocolo USB como interface de comunicação. Todo o sistema se comunica através de um
backboneUSB que trabalha sobre um modelo de interrupção. Esse modo decomunicação
provê ao sistema algumas características bem interessantes como: garantia na entrega dos
pacotes de dados e especialmente que esses dados serão entregues dentro de uma janela
de tempo previamente estabelecida. Assim, conforme comprovado pelos resultados obti-
dos é possível construir um robô utilizando um sistema operacional Linux como base e
mesmo assim, ter certas garantias de tempo real (soft real-time).

Palavras-chave: Robô, arquitetura de hardware e software, mestre-escravo, USB.





Abstract

A robot is a heterogeneous system composed by different elements of hardware and soft-
ware. To work properly, it is extremely important to establish an architecture that models
the different inter-relations between the systems. Hence,the aid of this work is proposing
a hardware and software architecture that works in an UAV (Unmanned Aerial Vehicle).

This kind of robot needs to attend very specific requests, that are really important in
choosing an architecture. For example, the UAV in development in the project AEROPE-
TRO, will use strongly computer vision techniques, making impractical the use of a real-
time operational system. So, to attend the real-time requests the cameras’ drivers need
to be projected for this kind of application, what does not happen in practice. However,
control this kind of system without any time restrictions orwith the danger of commu-
nications loss could lead to a chaotic situation. For all this, it is important to propose an
architecture that meet all the system demands.

The architecture proposed in this work follows the master-slave model and uses the
USB as the communication interface. The whole system communicates through a USB
backbone working under an interruption model. This kind of communication provides
some interesting characteristics to the system, like: guaranties data package deliverance
and the packages will be delivered in a fixed rate. Therefore,as can be proved by the
results, it’s possible to build a robot using a standard Linux as operational system, and
even though, attend to certain deadlines.

Keywords: Robot, hardware and software architecture, master-slave, USB





Sumário

Sumário i

Lista de Figuras iii

Lista de Tabelas v

1 Introdução 1
1.1 Arquitetura de um Sistema Robótico . . . . . . . . . . . . . . . . . .. . 1

2 Arquitetura do Sistema 3
2.1 Arquitetura Proposta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Comunicação 7
3.1 Visão Geral do Padrão USB . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Protocolo de Comunicação . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 HID - Human Interface Devices . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Visão Geral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Descritor HID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Desenvolvimento 15
4.1 Microcontrolador . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Protocolo de Aplicação . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Sistema de Testes . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Software de Alto-nível . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Sistema Operacional . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Subsistema USB . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.3 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.4 Biblioteca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Resultados e Conclusões 27

Referências bibliográficas 32

i



A Modelo de Mensagens 35
A.1 Motores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Bússola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.3 Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.4 Modo Automático . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



Lista de Figuras

2.1 Exemplo de um quadrotor comercial . . . . . . . . . . . . . . . . . . .. 3
2.2 Arquitetura proposta para o robô AEROPETRO . . . . . . . . . . .. . . 5

3.1 Arquitetura de comunicação USB. . . . . . . . . . . . . . . . . . . . .. 11
3.2 Árvore de descritores. . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.1 Sistema de Testes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Subsistema USB no Linux . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Sistema de Testes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Tempo de resposta USB com polling de 8ms. . . . . . . . . . . . . . .. 29
5.2 Tempo de resposta USB com polling de 1ms. . . . . . . . . . . . . . .. 30
5.3 Tempo de resposta da Bússola com polling de 1ms. . . . . . . . .. . . . 31
5.4 Tempo de resposta Sonar com polling de 1ms. . . . . . . . . . . . .. . . 31

iii





Lista de Tabelas

5.1 Médias e desvios padrão do tempo de espera em milissegundos. . . . . . 28

v





Capítulo 1

Introdução

A construção de um sistema robótico é uma atividade desafiadora e fascinante. Diferente
de outras ciências que estão restritas apenas a uma área do conhecimento a robótica é uma
ciência ampla e complexa que engloba diversos campos. Pode-se até considerar a robótica
como a arte da integração. Num robô sistemas elétricos, mecânicos e computacionais
interagem com o fim de executar tarefas cada vez mais complexas.

Por esse motivo um aspecto fundamentalmente importante no projeto de qualquer
sistema robótico é a definição de sua arquitetura de hardwaree software. Essa arquitetura
define como serão feitas as inter-conexões físicas e lógicasdo robô.

A arquitetura de um sistema robótico deve ser projetada de modo a possibilitar ao robô
a realização de suas tarefas, de acordo com certos requisitos. Assim uma arquitetura que
poderia funcionar precisamente para um dado robô pode ser completamente inadequada
para outro. Desse modo, antes de descrevermos a arquiteturaproposta nesse trabalho é
necessário compreender de modo um pouco mais claro o que é umaarquiteturade um
sistema robótico.

1.1 Arquitetura de um Sistema Robótico

A arquitetura de um sistema robótico refere-se a maneira como as estruturas heterogêneas
de hardware e software interagem para controlar o robô. Por exemplo, um sistema robó-
tico com diversas placas embarcadas e diferentes unidades de software necessita de uma
interface de comunicação e uma série de protocolos para que possa executar suas tarefas.
Assim, quando o projetista começa a programar as interfacespara cada módulo e define
como será feita a comunicação entre eles, na realidade ele está dando os primeiros passos
na definição de uma arquitetura.

Vale salientar que o projeto de uma arquitetura não é uma tarefa trivial. O projetista
deve muitas vezes equilibrar requisitos conflitantes. Noteque o robô é um sistema com-
plexo que integra diversos sensores e atuadores, que pode ter muitos graus de liberdade e
que deve conciliar sistemas que sãohard real-timecom sistemas que não precisam aten-
der aosdeadlinesde tempo real. Isso implica em diferentes necessidades de comunicação.
Enquanto por um lado se lida com sistemas síncronos que demandam restrições tempo-
rais, por outro lado o robô também possui sistemas assíncronos, ou orientados a eventos,
que não possuem tal restrição.



2 CAPÍTULO 1. INTRODUÇÃO

Desse modo, a tarefa do projetista da arquitetura pode ser resumida em algumas ativi-
dades básicas:

1. Analisar os requisitos do sistema.
2. Identificar os elementos síncronos e assíncronos.
3. Especificar um modelo de comunicação para o sistema. Ex: mestre-escravo.
4. Especificar a interface de comunicação do sistema. Ex: rede, barramento ou ponto

a ponto.
5. Definir um protocolo de comunicação.
6. Programar módulos de software que permitam a administração dos recursos físicos

do sistema.

A seguir apresentaremos a arquitetura proposta nesse trabalho e analisaremos alguns
aspectos teóricos relevantes na sua proposição.



Capítulo 2

Arquitetura do Sistema

Como destacado na seção anterior o primeiro passo na definição de uma arquitetura de
hardware e software é especificar os requisitos do sistema. Aarquitetura proposta nesse
trabalho tem por objetivo principal ser implantada no projeto AEROPETRO, em desen-
volvimento pelo Laboratório de Robótica da UFRN. O projeto visa construir um VANT
(veículo aéreo não-tripulado) que será utilizado em tarefas de inspeção e supervisão de
instalações da indústria de petróleo e gás.

Os VANTs podem ser construídos sobre qualquer plataforma aérea como um avião,
dirigível ou helicóptero. Atualmente, existem muitos projetos ao redor do mundo que
utilizam helicópteros como plataforma base, graças a sua mobilidade e a possibilidade
de vôo estacionário. No entanto, helicópteros comuns constituem modelos dinâmicos
difíceis de serem controlados e com um alto número de variáveis de estado. Por esse
motivo, costuma-se utilizar um tipo de helicóptero mais simples e relativamente mais
fácil de controlar: oQuadrotor.

Um Quadrotor é um tipo de helicóptero, como ilustrado na Figura 2.1, que utiliza
quatro acionamentos fixos, colocados em cada vértice de uma estrutura na forma de um
quadrado com os rotores adjacentes girando em sentidos opostos, para equilibrar os mo-
mentos e produzir os movimentos desejados. Desse modo, o controle de vôo é possível
ajustando-se a velocidade de cada um dos quatro motores.

Figura 2.1: Exemplo de um quadrotor comercial

Para cumprir seus objetivos o robô será equipado com quatro motoresbrushlesse com
um conjunto de sensores que incluem: câmera, sonar, IMU (unidade de medida inercial),



4 CAPÍTULO 2. ARQUITETURA DO SISTEMA

bússola digital e GPS. O robô contará ainda com um computadorembarcado, que será a
unidade responsável pelo processamento de imagens e tambémcontrole do sistema.

Com base na descrição acima se consegue extrair algumas características importantes.
A primeira envolve as dimensões do robô. Como esperado, esserobô deve ser pequeno
para que possa navegar em diferentes tipos de ambiente. Alémdisso, por utilizar motores
elétricos no seu acionamento seu peso deve ser reduzido. De fato, a especificação feita
pela equipe do projeto definiu que o robô deverá ocupar no máximo 1m2 de área e ter um
peso total de 5 kg. Tendo em vista que boa parte da carga do helicóptero é devida a es-
trutura mecânica e as baterias, é primordial um projeto criterioso da eletrônica embarcada
para que o sistema não ultrapasse os limites da especificação.

No que se refere à aplicação, podem-se destacar duas características marcantes. A pri-
meira é que o sistema deve ser robusto e funcionar sobre requisitos de tempo real. Atrasos
de comunicação e perdas de pacotes podem ser potencialmenteperigosos nesse tipo de
sistema. Outra característica é o uso massivo de visão computacional e processamento de
imagens.

Essas duas características geram uma situação difícil de harmonizar na prática. Em-
bora por um lado o processamento de imagens sugira a utilização de um computador
embarcado com um sistema operacional convencional, a própria natureza do sistema su-
gere uma implementação que tenha comportamento de um sistema de tempo real, o que
poderia ser alcançado sem necessariamente fazer uso de um computador embarcado.

A solução ótima seria utilizar um computador embarcado com um sistema operacional
de tempo real. No entanto, embora essa solução seja muito interessante do ponto de vista
teórico, na prática ela é extremamente difícil de ser aplicada. O motivo básico é que
quando se utilizam módulos de tempo real os drivers presentes no sistema operacional
convencional deixam de funcionar [Karim Yaghmour & Gerum 2008], pois, para garantir
que o sistema funcione em tempo real, o sistema operacional deve ter certeza de que os
drivers também funcionam em tempo real, o que não acontece naprática.

Portanto, o grande desafio deste trabalho é propor uma solução o mais próxima pos-
sível da solução ótima e que permita integrar o sistema de visão aos demais sensores e
atuadores. Assim, podemos resumir os requisitos do sistemaem:

• Peso total de todos os componentes de hardware restrito a 1,5kg.
• Utilizar um computador embarcado.
• Possibilitar que a lei de controle seja executada no computador embarcado.

2.1 Arquitetura Proposta

Toda arquitetura é baseada num modelo abstrato que define como se dará o fluxo de co-
municação no interior do sistema. A partir da descrição do sistema chegamos a conclusão
que omodelo mestre-escravoé a solução ideal para a aplicação. No modelo mestre-
escravo uma única unidade de maior poder computacional (o mestre) é responsável pelo
processamento e administração do sistema. As demais unidades (os escravos) realizam
apenas tarefas específicas requisitadas pelo mestre. No quetange a comunicação ela é
feita apenas entre o mestre e um escravo, nunca de escravo para escravo.



2.1. ARQUITETURA PROPOSTA 5

Embora esse modelo pareça demasiadamente restritivo, ele ésuficiente para o sistema
proposto. No nosso caso, contamos com apenas uma unidade mestre (o computador em-
barcado), que é responsável pelo processamento de imagem e controle, já os escravos são
unidades microcontroladas responsáveis pelo acionamentodos motores, leitura de senso-
res, etc.

USB

COMPUTADOR

USB

MICROCONTROLADOR MICROCONTROLADOR

CAMERA

Figura 2.2: Arquitetura proposta para o robô AEROPETRO

Após definido o modelo de comunicação e que unidades de processamento utilizar,
o próximo passo na definição da arquitetura é selecionar uma interface de comunica-
ção. Atualmente existe uma infinidade de interfaces de comunicação disponíveis, que
vão desde as interfaces de entrada/saída ponto-à-ponto atéas redes.

No caso das interfaces ponto-à-ponto, a maioria dos computadores modernos trazem
consigo um conjunto de portas USB. A USB foi desenvolvida como objetivo de servir
como uma interface padrão para entrada e saída de dados num computador, substituindo
outras interfaces mais lentas como as portas paralelas e seriais. Dentre as diversas carac-
terísticas da USB destacam-se:

• Protocolo de comunicação inerentemente mestre-escravo.
• Identificação automática de dispositivos. (plug and play)
• Drivers de classes de aplicação disponíveis na maioria dos sistemas operacionais.

Uma outra possibilidade seria utilizar uma rede de comunicação como interface de
enlace, nesse sentido a classe de redes que mais se adequa a nossa aplicação são as redes
industriais, especialmente a rede CAN. A CAN (Controller Area Network) é uma rede
especialmente projetada para aplicações que necessitam decomunicação em tempo real,
ela foi criada com o objetivo de servir como um barramento de comunicação para dispo-
sitivos eletrônicos dentro de ambientes ruidosos como o interior de um automóvel. Como
principais características da CAN destacam-se:



6 CAPÍTULO 2. ARQUITETURA DO SISTEMA

• Rígido controle de erros.
• Garantia do recebimento de mensagens.
• Interface de comunicação simples. (Par trançado)

Note que ambas as tecnologias, embora muito diferentes uma da outra, atendem aos
requisitos de comunicação da arquitetura proposta. No entanto, por tratar-se duma rede a
CAN é uma solução mais indicada quando se trabalha com sistemas distribuídos ou multi-
mestres. Além disso, a CAN não é uma interface nativa na maioria dos computadores,
por isso, é necessário adquirir placas de aquisição ou de conversão para que o compu-
tador possa conectar-se a rede. A USB, por outro lado, é uma solução inerentemente
mestre-escravo e prontamente disponível nos computadoresconvencionais. Além disso,
a USB apresenta características interessantes como: diferentes modelos de comunicação
e a possibilidade de organizar as funções do dispositivo numconjunto de interfaces inde-
pendentes. Por esses motivos, optamos por utilizar a USB como interface de comunicação
em nossa arquitetura.

De fato, o grande diferencial deste trabalho é a utilização da USB comobackbone(ou
interface de comunicação) do sistema. Com a utilização da USB em modo de interrupção
foi possível atingir resultados interessantes. Como ficaráclaro no decorrer do trabalho,
o robô, mesmo sendo implementado com um sistema operacionalLinux comum, obteve
resultados que permitem classificá-lo como um sistemasoft real-time, desde que operando
sobre certas condições.

Portanto, o foco desse trabalho é como conectar os microcontroladores com USB inte-
grada (PIC 18F2550), com um computador rodando um sistema operacional Linux. Para
atingir esse objetivo desenvolvemos uma biblioteca (USBRobot) que utiliza os drivers da
classe HID, presentes no Linux, para criar uma interface de comunicação em espaço de
usuário entre os programas implementados no mestre e os dispositivos escravos. Ou seja,
o resultado deste trabalho é a criação de umframeworkque possibilita ao projetista de sis-
temas robóticos um ambiente integrado para o desenvolvimento de robôs com arquitetura
mestre-escravo ebackboneUSB, sem a necessidade de utilizar um sistema operacional
de tempo real.



Capítulo 3

Comunicação

Como discutido anteriormente, a comunicação desempenha umpapel chave em qualquer
arquitetura de hardware e software. Boa parte das características de uma arquitetura são
dependentes de sua interface de comunicação. Nessa seção analisaremos o protocolo USB
e suas características básicas.

3.1 Visão Geral do Padrão USB

A USB (Universal Serial Bus) é um meio de conexão entre um computadorhoste um
certo número de periféricos. Ela foi inicialmente criada para substituir um conjunto de
interfaces de comunicações mais lentas como — portas paralelas, seriais e de jogos — por
uma única interface capaz de suportar todos esses dispositivos. Com o passar dos tempos,
a USB deixou de ser usada apenas para conectar dispositivos de baixa velocidade, como
os acima citados, e passou a ser a interface de comunicação com praticamente qualquer
dispositivo que possa ser conectado a um computador. A última revisão da especificação
adicionou conexõeshigh speedcom um limite de velocidade de 480 Mbps.

No entanto, diferente do que normalmente é expresso a USB nãoé um barramento.
Na realidade, topologicamente a USB parece muito mais com uma árvore com diversas
conexões ponto a ponto. Já do ponto de vista físico, a conexãose dá através de quatro
fios (ground, power e dois de sinal) que conectam umdeviceou umhubao computador
de modo semelhante a um par trançado Ethernet.

Adicionalmente, pode-se considerar a controladora USB presente nohostcomo sendo
o coração da USB. A controladora tem o dever de periodicamente verificar se odevicetem
algum dado a enviar. Graças a sua topologia nenhum dispositivo USB pode enviar dados,
a menos que seja requisitado pelohost. Essa configuração gera um sistemaplug-and-
playextremamente flexível, onde os dispositivos são automaticamente configurados pelo
computador.

Do ponto de vista tecnológico, a USB é extremamente simples,não passando de uma
aplicação mestre-escravo onde ohost verifica osdevicesperiodicamente em busca de
dados. Apesar dessa aparente limitação, o barramento tem algumas características inte-
ressantes, como a possibilidade de um dispositivo requisitar certa largura de banda, por
exemplo, para aplicações de transmissão de áudio. Outra característica importante é que
a USB funciona apenas como um meio de comunicação, não determinando o formato dos



8 CAPÍTULO 3. COMUNICAÇÃO

dados que trafegam sobre ela.
A especificação do protocolo USB define uma série de padrões que todo dispositivo

de um determinado tipo pode seguir. Se o dispositivo seguir essas definições ele poderá
utilizar umdriver padrão prontamente disponível no sistema operacional. Esses diferentes
padrões são denominadosclassese são definições de dispositivos comuns que têm as
mesmas necessidades de comunicação como teclados, mouses,joysticks, dispositivos de
rede e modems. Já outros dispositivos que não se adequam a esses padrões necessitam de
drivers específicos produzidos pelo fabricante.

Todas essas características tornam a USB um meio de comunicação prático e de baixo
custo para a conexão de diversos periféricos, sem a necessidade de reiniciar o sistema,
instalar placas e ficar perdido em meio a fios e conectores.

3.2 Protocolo de Comunicação

Conforme destacado na seção anterior a USB é uma interface decomunicação extrema-
mente flexível. No entanto, toda essa flexibilidade no nível de usuário tem um custo —
complexidade no nível de implementação. Felizmente, boa parte dessa complexidade é
ocultada tanto pela controladora USB quanto pelo próprio sistema operacional.

Em outras palavras, com a USB acontece algo semelhante ao conceito de pilha de
protocolos utilizado nas redes de computadores. Por exemplo, numa implementação em
camadas como o modelo OSI ou TCP/IP as camadas superiores requisitam serviços das
camadas inferiores e fornecem uma interface para as camadassuperiores. De tal modo,
que os detalhes de implementação estão ocultos em cada uma das camadas. Com a USB
a idéia é a mesma. A controladora USB trata das questões referentes às camadas física e
de enlace, enquanto fornece ao sistema operacional uma interface de acesso. O sistema
operacional, por sua vez, recebe esses dados e disponibiliza uma interface para osdrivers
do dispositivo se comunicarem com o mesmo.

Portanto, para utilizar o protocolo adequadamente precisamos compreender algumas
características gerais de seu funcionamento e em especial saber como se dá a comunicação
com as camadas superiores.

3.2.1 Endpoints

A forma mais básica de comunicação sobre a USB é através de algo conhecido como
endpoint. Um endpoint funciona como uma via de dados unidirecional, do computador
para o dispositivo (OUT endpoint) ou do dispositivo para o computador (IN endpoint).
Em nível de periférico pode-se encarar o endpoint como a ponte entre o hardware do
dispositivo e o seu firmware.

Já do ponto de vista do computador os dados, são trocados através depipes. Um pipe
é um canal lógico que interconecta umhosta um endpoint. Cadapipepossui ainda uma
série de parâmetros que precisam ser devidamente ajustado,como largura de banda, dire-
ção do fluxo de dados, tamanho máximo do buffer/dados e tipo detransmissão utilizada.
Por exemplo, o default pipe é composto pelo endpoint zero IN eo endpoint zero OUT
com transferência de dados do tipoControl.



3.2. PROTOCOLO DE COMUNICAÇÃO 9

A USB descreve basicamente dois tipos de pipes:

Stream Pipes: esse tipo de pipe não possui um formato de dados definido, funciona ape-
nas como uma via. Os dados são enviados seqüencialmente numadireção predefi-
nida IN ou OUT e podem ser controlados tanto pelohostcomo pelodevice.

Message Pipes:esse tipo de pipe tem um formato de dados bem definido. São contro-
lados pelo host. E os dados são transferidos no sentido informado pela requisição.
Portanto, são bi-direcionais.

Resumindo, do ponto de vista do computador a comunicação é feita através de pi-
pes, enquanto a comunicação entre a controladora e o dispositivo utiliza o conceito de
endpoints.

Tipos de Endpoints

Um endpoint pode ser de quatro tipos diferentes. Cada um desses tipos descreve como os
dados são transmitidos:

CONTROL: O control endpoint é utilizado como meio de acesso para diferentes pro-
pósitos dentro do protocolo. Eles são comumente utilizadospara configurar um
dispositivo, retornar informações de status, enviar comandos para o dispositivo ou
enviar informações sobre o mesmo. Esses endpoints são normalmente pequenos, al-
guns poucos bytes, no máximo 64 bytes, e todo dispositivo USBdeve ter o endpoint
zero IN e OUT, utilizados para tarefas administrativas. Esse tipo de transferência
tem banda garantida pelo protocolo em qualquer situação.

INTERRUPT: Esse endpoint transfere pequenos pacotes de dados a intervalos bem de-
terminados sempre que ohostUSB requisita. É normalmente utilizado por dispo-
sitivos de interface como teclados, mouses e joysticks. Além dessas, aplicações
o método de interrupção também é utilizado para controlar dispositivos, mas sem
transferir grandes quantidades de dados. Esse tipo de transferência tem uma banda
reservada diretamente pelo protocolo. Na USB 2.0full-speedesse endpoint tem
uma banda reservada de 64 Kbps.

BULK: Os dispositivos que usam esse tipo de transferência precisam transferir uma
grande quantidade de dados sem perda de informações. Esse tipo de transmissão
não tem banda reservada pelo protocolo. Quando uma requisição de transmissão
é feita a controladora utiliza a largura de banda disponívelpara a transferência.
Desse modo, sua largura de banda é dependente da carga do sistema. A transferên-
cia BULK é normalmente utilizada porflash driverse por impressoras.

ISOCHRONOUS: Esse tipo de endpoint transmite grande quantidade de dados com la-
tência constante, no entanto sem garantia de integridade. Ele é utilizado por dispo-
sitivos que podem lidar com perda de dados, mas que necessitam garantir um fluxo
contínuo das informações. Essa característica de transmissão é util especialmente
na transferência de áudio e vídeo.

Na aplicação proposta nesse trabalho a USB é utilizada como meio de comunica-
ção entre os microcontroladores e o computador. Note que esse tipo de comunicação



10 CAPÍTULO 3. COMUNICAÇÃO

tem características perfeitamente compatíveis com as dos endpoint do tipo INTERRUPT.
Precisam-se transferir dados que demandam pouca largura debanda como leitura de sen-
sores e referências para atuadores. Adicionalmente como o robô é um sistema de tempo
real deseja-se que esses dados cheguem num intervalo de tempo bem determinado. Por-
tanto, a utilização do modo de transferência baseado em interrupções dá à arquitetura a
possibilidade de responder em tempo real graças às características do próprio protocolo.

3.2.2 Interfaces

Na arquitetura de comunicação da USB os endpoints não são diretamente acessíveis ao
host, eles estão contidos em estruturas lógicas chamadasinterfaces. Uma interface USB
é capaz de manipular apenas um tipo de conexão lógica, por exemplo, teclado, mouse ou
uma impressora. Um dispositivo USB pode ainda ter múltiplasinterfaces, por exemplo,
uma PABX tem uma interface para controle dos botões do tipo INTERUPT, uma interface
para impressão com endpoint do tipo BULK, e uma interface de áudio com endpoint do
tipo ISOCHRONOUS para o telefone. Como as interfaces USB representam funcionali-
dades básicas, cada driver USB controla uma interface; desse modo, para o exemplo do
PABX o computador utilizará três drivers diferentes.

Essa funcionalidade só é possível porque cada periférico é registrado pela controla-
dora USB com um endereço de dispositivo e com um conjunto de endereços de interfaces.
Essa característica permite localizar a interface dentro da árvore de dispositivos. A figura
a seguir ilustra esse fato.

Um detalhe que talvez tenha passado despercebido é como a controladora registra o
dispositivo dentro da árvore. Para fazer isso o dispositivoprecisa informar à controladora
que está conectado e em seguida informar suas características. Esse processo é chamado
de enumeraçãoe é uma parte importante do protocolo. Durante a enumeração,o dis-
positivo é devidamente registrado e, a partir de então, a controladora tem condições de
verificar se pode atender as necessidades de comunicação requisitadas pelo dispositivo.
Essas informações enviadas pelos dispositivos são chamadas dedescritores.

3.2.3 Configuration

Num nível hierárquico acima da interface encontram-se asconfigurações. Essas estruturas
descrevem algumas características gerais do dispositivo como: potência consumida, se o
dispositivo é auto-alimentado ou alimentado pelo barramento e o número de interfaces
presentes naquela configuração. Quando o dispositivo entrano processo de enumeração,
ele envia o descritor do dispositivo e a partir dessa informação a controladora decide que
configuração usar. Vale salientar que um dispositivo pode ter mais de uma configuração,
no entanto isso é pouco usado na prática. Na maioria das vezesum dispositivo USB tem:
um descritor de dispositivo, um descritor de configuração, um conjunto de descritores de
interface, e por fim cada interface tem um ou mais descritoresde endpoint.

A figura a seguir dá uma visão geral do conjunto de descritoresenviados durante o
processo de enumeração.

Para maiores informações sobre a USB queira considerar [usb.org 2000]



3.3. HID - HUMAN INTERFACE DEVICES 11

My Function

EP0 IN

EP0 OUT

EP1 IN

EP1 OUT

ADDR = 2

My Function

EP0 IN

EP0 OUT

EP1 IN

EP1 OUT

ADDR = 3

Host

Figura 3.1: Arquitetura de comunicação USB.

3.3 HID - Human Interface Devices

Até o momento foram destacados alguns aspectos gerais do funcionamento da USB como:
a arquitetura do protocolo e o modelo de comunicação entre ohoste odevice. No entanto,
para que os dados possam ser acessados em nível de aplicação énecessário definir uma
camada de interface entre os dados provenientes da controladora e o sistema operacional.
Essa interface é de responsabilidade dodriver.

O driver é um programa de baixo nível que conhece as excentricidades do dispositivo
e que é capaz de comunicar-se com o mesmo. Ele também é responsável por implementar
uma série de funções (interface) que possibilitem ao sistema operacional acessar aquele
dispositivo. Assim todo dispositivo conectado a USB, após passar pelo processo de enu-
meração, deve ser associado a um driver para enfim ser acessível ao sistema.

Desse modo, quando projetamos um dispositivo USB adicionalmente precisamos pro-
videnciar um driver, para que o SO possa se comunicar com o dispositivo. No entanto,
implementar um driver não é uma tarefa fácil. Pois, o programador precisa estar fami-
liarizado com as estruturas, funções e excentricidades do kernel do sistema operacional.
Felizmente, a USB trabalha com um conceito extremamente útil, o conceito de classes de
dispositivos.

Como destacado anteriormente, existem dispositivos que possuem características e
necessidades de comunicação semelhantes. Esses dispositivos podem ser agrupados em
classes e ao invés de implementar um driver para cada novo dispositivo basta ter um



12 CAPÍTULO 3. COMUNICAÇÃO

Descriptor

Endpoint

Descriptor

Endpoint

Descriptor

Endpoint

Descriptor

Interface

Descriptor

Endpoint

Descriptor

Endpoint

Descriptor

Endpoint

Descriptor

Interface

Configuration

Descriptor

Descriptor
Device

Figura 3.2: Árvore de descritores.

driver da classe. Existem três grandes classes de dispositivos comumente associados a
USB: dispositivos de interface humana (HID), dispositivosde armazenamento em massa
(MSD) e dispositivos de comunicação (CDC). Cada uma dessas classes já possui um
driver implementado na grande maioria dos sistema operacionais.

Portanto, se adequarmos o firmware de nosso dispositivo paraser compatível com
uma dessas classes não haverá necessidade de implementar umdriver.

3.3.1 Visão Geral

Após analisar os requisitos de comunicação demandados por nossa aplicação chegamos
a conclusão que podíamos adequar nossos microcontroladores a classe HID. Essa classe
é normalmente utilizada para conectar dispositivos que interagem diretamente com o ser
humano, através de entrada e saída de dados como: mouses, teclados e joysticks. Embora
o nome dê a impressão que apenas dispositivos que interagem com o homem façam parte
dessa classe. Outros dispositivos com necessidades de comunicação semelhante também
fazem parte de sua especificação.

No que se refere a comunicação, os dispositivos HID possuem pelo menos dois end-
points: um endpoint de controle (default) e um interrupt endpoint de entrada. Opcional-
mente um interrupt endpoint de saída também pode ser adicionado à mesma interface. O
endpoint default é utilizado para enviar as mensagens administrativas típicas da USB e
as requisições HID como: pedido ou notificação de envio. Já osinterrupt endpoints são
utilizados para o envio de dados.

Para compreendermos como se dá esse modelo de comunicação considere o exemplo
de um teclado USB. A cadan milissegundos (valor estipulado no descritor do interrupt
endpoint) ohost envia para odeviceuma mensagem perguntando se o mesmo possui
dados a enviar. Se odevicepossuir dados, no caso do teclado uma ou mais teclas que
foram pressionadas, ele deverá confirmar a disponibilidadede dados e enviá-los através
do interrupt endpoint de entrada. Os dados são então recebidos pelo driver HID que
repassará os dados para interface do sistema operacional.



3.3. HID - HUMAN INTERFACE DEVICES 13

3.3.2 Descritor HID

Um ponto importante que precisa ser compreendido é que o driver HID é um driver padrão
que deve funcionar para uma infinidade de dispositivos. Paraalcançar esse objetivo o
HID usa uma idéia interessante: o dispositivo deve descrever o formato de seus dados e
informar para que o dado serve. Essas informações são repassadas para o driver através
de um tipo especial de descritor, chamado deHID descriptor.

Diferente dos descritores estudados anteriormente o descritor HID não é um conjunto
de dados guardados na ROM do microcontrolador. Na realidadeo descritor HID é um
conjunto de mensagens que são enviados para o driver após a fase de enumeração. Essas
mensagens são interpretadas pelo driver através de umparser, que ao final do processo,
sabe o formato e o significado das mensagens enviadas pelo dispositivo.

Vale salientar que os descritores HID permitem descrever umnúmero infinito de men-
sagens, o que provê grande flexibilidade a essa classe. Por exemplo, atualmente simulado-
res de avião, equipamentos de realidade virtual, instrumentos hospitalares e uma grande
quantidade de outros dispositivos comunicam-se através daclasse HID.

Mas, toda essa flexibilidade tem um custo. Além da complexidade da implementação
do parser, a própria escrita do descritor pode constituir-se num processo exaustivo. Para
maiores informações a respeito da classe HID queira considerar [Forum 2001].



14 CAPÍTULO 3. COMUNICAÇÃO



Capítulo 4

Desenvolvimento

Como destacado anteriormente, uma arquitetura de hardwaree software tem por objetivo
descrever como se dará a comunicação entre as diversas partes de um sistema robótico. A
arquitetura proposta nesse trabalho utiliza duas unidadesbásicas: os microcontroladores
e o computador.

Contudo, a comunicação entre as diferentes unidades computacionais não ocorre na-
turalmente. Antes, é preciso estabelecer um protocolo entre eles. Ou seja, é necessário
programar os microcontroladores e o computador de tal formaque a comunicação entre
eles seja possível.

4.1 Microcontrolador

Considerando o modelo mestre-escravo, utilizado nesse projeto, os microcontroladores
desempenham o papel de escravos. Eles são responsáveis por todas as tarefas de baixo
nível associadas ao robô como: interfacear sensores, gerarsinais para acionamento de
atuadores etc.

Na arquitetura proposta nesse trabalho utilizou-se o microcontrolador PIC 18F2550
[Microchip 2007], fabricado pela Microchip Technology. Esse microcontrolador tem im-
plementado um hardware capaz de comunicar-se diretamente com a USB, sem a utilização
de transciever externo. Além disso, ele possui uma série de outros recursos que o torna
altamente flexível e ideal para aplicações dedicadas. Dentre eles podemos destacar:

• Diversos pinos de E/S digital (24 pinos).
• Conversores AD (10 canais).
• Quatro Timers.
• Interrupções com prioridade ajustável (19 tipos).
• Dois módulos CCP (Capture/Compare/PWM).
• Modo de operação economizador de energia.
• Comunicação serial: USART, SPI e I2C.

4.1.1 Framework

Para propiciar que seus microcontroladores se comunicassem através da USB a Microchip
desenvolveu um framework. Esse conta com uma API que implementa a pilha de proto-



16 CAPÍTULO 4. DESENVOLVIMENTO

colos utilizada pela USB, bem como uma API para cada uma das principais classes de
dispositivos. Esse framework ainda disponibiliza uma série de códigos fontes e exemplos
compilados de diferentes aplicações utilizando as funcionalidades USB.

Embora o framework da Microchip forneça uma fonte inestimável de ajuda no desen-
volvimento de aplicações embarcadas. Vale salientar que essa ferramenta ainda está em
desenvolvimento e que para utilizá-la efetivamente em projetos reais o programador deve
adaptar seus códigos a sua realidade.

Por exemplo, no caso do PIC 18F2550 nenhum dos códigos fontespresentes no fra-
mework fora projetado para esse tipo de microcontrolador. Assim, antes de implementar
qualquer firmware de teste, um bom tempo foi despendido para adaptar os códigos do
framework para o microcontrolador utilizado no projeto.

Embora não tenhamos o objetivo de explicar detalhadamente ofuncionamento do
framework, compreender algumas de suas características é de fundamental importância.
Um primeiro aspecto é que todas as funções da API podem ser divididas em dois grandes
grupos:

1. Funções da pilha de protocolo
Funções Administrativas
Funções de Callback

2. Funções da Classe de Dispositivo

As funções administrativas, como o próprio nome indica, sãoresponsáveis por cuidar
dos detalhes do protocolo. Essas funções são responsáveis pelas trocas de mensagens
durante o processo de enumeração, pela definição do estado deoperação, administração
dos endpoints etc.

Todas essas funções são praticamente ocultas ao desenvolvedor do software embar-
cado. No entanto, uma dessas funções é de importância vital para o bom funcionamento
do sistema: a funçãoUSBDeviceTasks. Essa função é a principal do ponto de vista do
dispositivo. Ela é responsável por implementar a máquina deestados da USB, e por isso,
deve ser chamada periodicamente para receber os pacotes através da pilha de protocolos.

Um detalhe interessante é que essa função deve ser chamada a cada 100us durante
o processo de enumeração. Note que esse tempo é extremamentepequeno para a mai-
oria das aplicações práticas. No entanto, essa restrição é relaxada após a enumeração.
Na realidade, após a enumeração essa função deve ser chamadatão rapidamente quanto
os envio de dados para o computador. Vale salientar que essa função pode ser chamada
explicitamente no main, funcionando em modo de polling ou pode-se utilizar o modo de
interrupção. A vantagem de utilizar o modo de interrupção é que o programador não pre-
cisará se preocupar com essa função, pois sempre que houver anecessidade de atualizar a
máquina de estados da USB uma interrupção será gerada e aUSBDeviceTasksserá auto-
maticamente chamada. E para efeitos práticos essa função leva em torno de 50 ciclos de
máquina para ser executada.

Ainda no que se refere às funções da pilha de protocolo, existem as funções de call-
back. Essas funções servem para o tratamento de situações específicas dentro do proto-
colo. Por exemplo, a funçãoUSBCBSuspendé utilizada para executar tarefas impostas
pelo programador quando o dispositivo entrar em modo suspenso pela USB (o que indica



4.2. FIRMWARE 17

uma inatividade durante 3ms). Vale salientar que essas funções em sua maioria estão ape-
nas declaradas no código, sendo de responsabilidade do programador sua implementação.

Já as funções de classe de dispositivo são funções de nível superior dependentes das
funções da pilha USB. Essas funções são responsáveis pela comunicação do firmware
com o driver da classe. No caso da classe HID utilizada nesse projeto a interface com o
driver se dá através de cinco funções básicas:

USBCheckHIDRequest: utilizada pela função de callback USBCBCheckOtherReq para
informar que no endpoint default trafegam, além de informações típicas da pilha,
funções pertinentes a classe de dispositivo.

HIDTxPacket: utilizado para enviar dados através de um interrupt endpoint especifi-
cado.

HIDRxPacket: utilizado para receber dados através de um interrupt endpoint especifi-
cado.

HIDTxHandleBusy: retorna se o microcontrolador está com o controle do endpoint. No
caso da transmissão, isso indica que não existe nenhuma transmissão pendente.

HIDRxHandleBusy: retorna se o microcontrolador está com o controle do endpoint. No
caso da recepção, isso significa que há dados disponíveis no buffer de leitura.

Novamente, vale salientar que o framework USB da Microchip ainda está em de-
senvolvimento. Desse modo, algumas funcionalidades aindapoderão ser alteradas ou
adicionadas. Mas, de modo geral, ele já oferece atualmente um conjunto de funções su-
ficientes para o desenvolvimento de uma infinidade de aplicações utilizando a USB. Para
maiores detalhes sobre o framework queira analisar:www.microchip.come informações
pertinentes no documento USB Device Library Help.

4.2 Firmware

Ao se deparar pela primeira vez com o emaranhado de funções e arquivos utilizados
pelo framework da Microchip o programador pode facilmente sentir-se intimidado. No
entanto, com um pouco de paciência é possível compreender a estrutura lógica do mesmo
e fazer algumas adaptações que facilitam o desenvolvimentode aplicações futuras.

Existem alguns arquivos do framework que são utilizados comfreqüência e que devem
ser devidamente editados pelo programador. Entre eles pode-se destacar:

• HardwareProfile.h: esse arquivo contém um conjunto de definições específicas do
hardware do usuário que serão utilizados no main. Por exemplo, mnemônicos de
periféricos como LEDs, MOTORES e etc.

• usb_config.h: contém uma série de definições de configuração do protocolo. É
nesse arquivo que o programador define se utilizará o USBDeviceTasks em modo
de polling ou interrupção; define como será o sistema de bufferização usado pelo
hardware; as configurações de velocidade; configurações de descritores etc.

• usb_desciptors.c:esse arquivo contém a árvore de descritores do dispositivo.Des-
critores de dispositivo, configuração, interface, endpoint e de classe.



18 CAPÍTULO 4. DESENVOLVIMENTO

• main.c: arquivo principal.

O programador deve atentar que as configurações do microcontrolador sejam feitas
adequadamente. Para isso existe uma função chamada InitializeSystem() que é responsá-
vel pela configuração bruta da USB. Qualquer outro tipo de inicialização deve ser feita
através da função UserInit(), implementada pelo programador.

Outro aspecto importante é como o programador deve organizar seu código para tirar
o máximo de proveito do framework. Por exemplo, uma análise criteriosa dos diversos ar-
quivos main presentes no framework ilustra uma sub-divisãodesse código em pelo menos
quatro seções distintas que devem ser devidamente programadas:

• Tratamento de interrupção: Os microcontroladores PIC permitem que o progra-
mador utilize funções para o tratamento de interrupções. Especificamente o PIC
18F2550 permite classificar as interrupções por classe: interrupções de alta e de
baixa prioridade.

• ProcessIO: Essa função permite ao programador tratar diretamente as mensagens
recebidas através da USB. Isso possibilita separar nitidamente o código responsável
pela comunicação do restante do programa.

• Funções de Callback: Como destacado anteriormente existemuma série de situa-
ções dentro do protocolo USB que podem ser importantes para aplicação. Essas
situações podem ser devidamente tratadas utilizando as funções de callback.

• Demais funções: são funções auxiliares definidas pelo usuário e dependentes da
aplicação.

4.2.1 Protocolo de Aplicação

Até o momento foi compreendido que toda tarefa de comunicação entre o dispositivo e o
computador, do ponto de vista de firmware, é devidamente tratada pelas funções da API
da Microchip. A tarefa do programador no que tange a comunicação resume-se a prover
a descrição dos dados que trafegarão pela USB.

Essa descrição é feita através do conjunto de descritores citados no capítulo três. As-
sim, antes de implementar qualquer lógica referente a aplicação o projetista deve especi-
ficar esses descritores criteriosamente. Após estudarmos diversas configurações possíveis
desses descritores selecionamos um modelo básico que pode ser eficientemente usado em
aplicações de robótica.

Esse modelo utiliza uma única interface HID, e procura criarduas vias de dados inde-
pendentes uma para entrada e outra para saída. Uma rápida leitura de seu descritor HID
deixa claro que o sistema trabalhará com dois endpoints, um de entrada e outro de saída,
ambos de 64 bytes. Cada endpoint é codificado para trabalhar com unidades de 8-bits,
sem codificação de sinal (valores de 0-255) e indexados de 0-63.

//Descritor Específico da Classe HID
ROM struct{BYTE report[HID_RPT01_SIZE];}hid_rpt01={
{

0x06, 0x00, 0xFF, // Usage Page = 0xFFFF (Vendor Defined)



4.2. FIRMWARE 19

0x09, 0x01, // Usage
0xA1, 0x01, // Collection (Application)
0x19, 0x01, // Usage Minimum (Vendor Usage = 0)
0x29, 0x40, // Usage Maximum (Vendor Usage = 64)
0x15, 0x00, // Logical Minimum (Vendor Usage = 0)
0x26, 0xFF, 0x00, // Logical Maximum (Vendor Usage = 255)
0x75, 0x08, // Report Size 8 bits (one full byte)
0x95, 0x40, // Report Count 64 bytes in a full report.
0x81, 0x02, // Input (Data, Var, Abs)
0x19, 0x01, // Usage Minimum (Vendor Usage = 0)
0x29, 0x40, // Usage Maximum (Vendor Usage = 64)
0x91, 0x02, // Output (Data, Var, Ads)
0xC0}

}; // End Collection

Note que a descrição dos dados é extremamente genérica, ou seja, o protocolo não
especifica em detalhes a forma dos dados que trafegarão sobrea USB. Essa caracterís-
tica pode então ser utilizada para gerar um protocolo de aplicação baseado em troca de
mensagens. Onde o desenvolvedor do software embarcado e o programador de alto nível
especificam um conjunto de mensagens que serão trocadas entre o microcontrolador e o
computador. Embora essa abordagem seja extremamente simples, na prática ela apresenta
bons resultados. Tendo como principal vantagem a criação deum protocolo facilmente
extensível e de fácil manutenção.

Por outro lado, o modelo de troca de mensagem tem como principal desvantagem não
disponibilizar ao computador meios de descobrir como se comunicar com o dispositivo.
Em outras palavras, o programador de alto-nível precisa conhecer o protocolo de comu-
nicação antes de se comunicar com dispositivo. Assim, pode-se considerar esse modelo
como sendo orientado pelo dispositivo. Por exemplo, se o programador de alto-nível de-
sejar ler os dados de um determinado sensor ele precisará saber previamente com que
microcontrolador se comunicar e enviar um conjunto de mensagens apropriadas, para en-
fim receber os dados do sensor.

4.2.2 Sistema de Testes

O firmware de testes implementado tenta se aproximar o máximopossível de sua aplica-
ção prática num VANT. Onde um grande conjunto de sensores e atuadores estará conec-
tado ao mesmo microcontrolador. No sistema de testes, o microcontrolador é responsável
pela interface de quatro motores brushless, uma bússola digital e um sonar com o compu-
tador.

Para possibilitar essa comunicação foi especificado um pequeno conjunto de mensa-
gens, conforme o apêndice A. Além disso, procuramos explorar o conceito de interfaces
disponibilizado no padrão USB. Para isso, fizemos algumas adaptações no framework
Microchip para que fosse possível trabalhar com várias interfaces HID diferentes.



20 CAPÍTULO 4. DESENVOLVIMENTO

BUSSOLASONAR

MOTORMOTOR MOTOR MOTOR

COMPUTADOR

MICROCONTROLADOR

Figura 4.1: Sistema de Testes

4.3 Software de Alto-nível

Nessa seção será descrito o conjunto de softwares de alto-nível responsável pelo enlace
entre o dispositivo USB e o computador. O objetivo dessa camada de software é tornar
os recursos disponibilizados no microcontrolador visíveis ao programador de alto-nível.
Essa abstração é feita através de um conjunto de classes que permitem ao usuário interagir
diretamente com o microcontrolador, sem conhecer os detalhes de implementação do
protocolo de enlace.

4.3.1 Sistema Operacional

Para acessar qualquer recurso de hardware um programa em nível de usuário deve fazer
requisições ou chamadas ao sistema operacional. O sistema operacional então se comuni-
cará com o dispositivo, fazendo uma ponte entre o hardware e oprograma. Portanto, para
compreender como se dará a comunicação através da USB é fundamental compreender
como o sistema operacional processa esses dados.

É evidente que cada sistema operacional tratará as operações de I/O de forma diferen-
ciada. Assim, nos concentraremos em compreender como essasoperações são tratadas no
Linux, sistema operacional utilizado nesse desenvolvimento. Vale salientar ainda, que a
biblioteca desenvolvida nesse trabalho funciona apenas noLinux. Mais especificamente
nas versões do kernel a partir da 2.6.24

4.3.2 Subsistema USB

Todo sistema operacional é divido em diversos subsistemas responsáveis por tarefas es-
pecíficas. Entre esses subsistemas, o de I/O (input/output) é especialmente importante



4.3. SOFTWARE DE ALTO-NÍVEL 21

quando se trabalha com interfaceamento de hardware. O objetivo desse subsistema é
tornar visível aos usuários os elementos de hardware conectados ao computador.

Essa tarefa é bastante desafiadora do ponto de vista computacional. De um lado, o
subsistema de I/O deve lidar com hardwares com características de comunicação muito
diferentes, por exemplo, um modem e uma impressora. Por outro, precisa fornecer uma
série de interfaces padronizadas para os usuários do sistema.

Para lidar com esses desafios o Linux organiza seu subsistemade I/O em duas partes
nítidas. Os drivers, que são programas básicos responsáveis pelo interfaceamento com o
hardware. Esses programas conhecem as necessidades e excentricidades da comunicação
de cada dispositivo e são essenciais para a comunicação entre o PC e o dispositivo. Sem o
driver adequado, fornecido pelo fabricante, é impossível comunicar-se com o dispositivo.

Outra parte importante do subsistema de I/O são as camadas lógicas de interface. Es-
sas camadas intermediárias estão localizadas logicamenteacima dos drivers e são respon-
sáveis por proverem serviços ao sistema operacional através do drivers. Essas interfaces
incluem dispositivos com características de comunicação parecida. Por exemplo, um lei-
tor de DVD, tem características de comunicação idênticas a um HD e portanto ambos são
tratados como dispositivos de bloco pelo Linux. Enquanto umteclado e um mouse são
tratados como dispositivos de caracteres.

A USB, como era de se esperar, deve ser tratada pelo sistema operacional através do
subsistema de I/O. No entanto, graças a suas características particulares, a USB precisa
de um tratamento especial no subsistema de I/O. A figura 4.2 ilustra a arquitetura do
subsistema USB do Linux. Para maiores informações sobre o subsistema USB e como são
implementados osdevicedrivers considere [Jonathan Corbet & Kroah-Hartman 2005].

Essa figura deixa claro que a controladora USB é diretamente responsável pelo enlace
entre o device e o host. Em seguida uma camada de software intermediária, a USB-Core,
é responsável por prover uma interface entre a controladorae o driver do dispositivo. Esse
driver pode ser tanto um driver de classe (HID, CDC ou MSD), como um driver propri-
etário. Em seguida o driver deve comunicar-se com as camadasde interface, exatamente
como descrito anteriormente.

4.3.3 Drivers

Como destacado até o momento os drivers desempenham um papelvital no interfacea-
mento entre o dispositivo e o sistema operacional. Quando umdispositivo USB é co-
nectado ao computador automaticamente o Linux associa uma série de drivers aquele
dispositivo. Se o dispositivo implementar as funções da classe HID, dois drivers espe-
cíficos serão associados ao dispositivo: o HIDDEV e o HIDRAW.Esses drivers geram
automaticamente umfile descriptorresponsável por representar o dispositivo dentro do
sistema operacional.

Essefile descriptoré um tipo de descritor de arquivo especial, pois representa um dis-
positivo não um ponteiro para um conjunto de dados armazenado na unidade física. No
entanto, assim como um arquivo convencional, é possível executar uma série de opera-
ções sobre esse descritor. Isso significa que a interface do sistema operacional responsável
pelas transações com umfile descriptorque representa um dispositivo e um arquivo con-



22 CAPÍTULO 4. DESENVOLVIMENTO

Figura 4.2: Subsistema USB no Linux

vencional são muito parecidas.

Por exemplo, todo driver presente no sistema operacional deve fornecer à camada de
aplicação um conjunto de interfaces que possibilitarão a comunicação com o dispositivo.
Embora essa interface possibilite uma infinidade de funções, algumas são prioritárias.
Essas funções incluem: Open, Close, Read, Write e opcionalmente uma função genérica
chamada Ioctl, responsável por configurar o dispositivo dentre outras funcionalidades.
Com essas funções devidamente implementadas um programa a nível de usuário tem
totais condições de se comunicar com um dispositivo de hardware. Note ainda que com
exceção da Ioctl as demais funções possuem a mesma semânticade suas correspondentes
em arquivos convencionais.

Um aspecto importante é que ambos os drivers (HIDDEV e HIDRAW) implementam,
como era de esperar, as mesmas funcionalidades. E ambos funcionam comunicando-se
com um driver de baixo nível chamado hid-core. Esse último é responsável pela troca de
mensagens com o dispositivo e implementa o parser capaz de traduzir os descritores HID.
Assim, tanto o HIDDEV como o HIDRAW funcionam na verdade comouma interface
entre o programa a nível de aplicação e o hid-core.

Uma pergunta importante é: por que o sistema operacional associa esses dois drivers
ao hid-core? O principal motivo é que o desenvolvimento de soluções HID ainda está em
andamento no Linux. Esses drivers foram criados em diferentes épocas e com diferentes
objetivos. O HIDDEV, por exemplo, foi criado com o objetivo de criar uma interface HID



4.3. SOFTWARE DE ALTO-NÍVEL 23

padrão. No entanto, esse driver utiliza amplamente conceitos e nomeclaturas baseados
no padrão HID, que vale salientar, é algo extremamente complexo. Isso acabou tornando
o driver excessivamente complexo e com poucas aplicações práticas. Junte a esse fato a
pouca documentação disponível sobre o mesmo, e você encontrará o motivo porque é tão
complexo o desenvolvimento de soluções HID para o Linux.

O HIDRAW, por outro lado, surgiu como uma “solução” para os problemas HIDDEV,
e serve como um modo unificado de se comunicar comraw devicesatravés da USB ou
Bluetooth. Sua filosofia é lançar toda a complexidade da interpretação das mensagens
HID para o nível de aplicação. Assim o programador de alto-nível é que deve interpretar
a semântica das mensagens HID e não o driver. Uma observação importante é que o
HIDRAW nasceu para substituir o HIDDEV, no entanto, como esse, ainda tem alguns
problemas de implementação, em especial na interface de escrita. Ainda levará certo
tempo até tornar-se o padrão do Linux.

4.3.4 Biblioteca

Na seção anterior foram destacas as interfaces do Linux utilizadas para comunicação com
dispositivos HID. É fácil perceber que essas soluções individualmente não permitiriam a
construção de uma biblioteca de comunicação eficiente. Desse modo, a idéia básica que
utilizamos para desenvolver a biblioteca USBRobot foi aproveitar o que cada uma dessas
interfaces possui de melhor.

Inicialmente, foi observado que o driver HIDDEV possibilita um meio eficiente de
escrita, ou seja, transmissão de dados para o dispositivo. Após um estudo exaustivo de
seu código fonte foi possível estabelecer a comunicação como dispositivo. Essa comuni-
cação é feita através de um conjunto de estruturas características do driver e um conjunto
de chamadas IOCTL. Uma observação interessante é que nas versões anteriores do driver
era necessário realizar uma chamada de sistema operacionalpara cada byte a ser enviado,
o que é extremamente custoso. Nas versões mais recentes foi possível enviar dados uti-
lizando apenas duas chamadas de sistema operacional: uma para montagem do pacote e
outra para enviar o pacote. O HIDDEV também conta com uma interface eficiente para
comunicação não bloqueante, onde suas estruturas internassão atualizadas automatica-
mente em nível de kernel.

No entanto, percebeu-se que o HIDDEV era extremamente ineficiente na leitura blo-
queante. Por algum motivo, sua implementação fazia que muitos dados fossem perdidos,
e portanto, não visíveis a nível de aplicação. Por outro lado, a interface HIDRAW, como
foi projetada em especial para leitura de dispositivos, é extremamente eficiente nesse sen-
tido. Por esse motivo, as funções de leitura bloqueante foram implementadas utilizando o
HIDRAW como base. A seguir encontra-se uma lista das principais funções implementa-
das pela USBRobot.

USBrobot Construtor da classe.
˜ USBrobot Destrutor da classe
openDeviceAbrir o dispositivo.
closeDeviceFechar o dispositivo
writeDevice Escrita não bloqueante no dispositivo.



24 CAPÍTULO 4. DESENVOLVIMENTO

readDevice Leitura não bloqueante do dispositivo.
readBlocking Leitura bloqueante do dispositivo.
setDeviceId Definir id de produto a ser verificada pela classe.
getDeviceId Retornar id do produto.
setVendorId Definir id do vendedor a ser verificada pela classe.
getVendorId Retornar id do vendedor.
getInSize Tamanho do endpoint de entrada.
getOutSize Tamanho do endpoint de saída.

Além de possibilitar um acesso mais simples e intuitivo aos dispositivos USB, a classe
USBRobot conta ainda com um esquema de tratamento e recuperação de erros. O objetivo
do modelo de tratamento de exceção implementado na classe é possibilitar ao programa-
dor de alto nível total controle sobre o que está acontecendona comunicação, no entanto,
sem sobrecarregá-lo com muitos detalhes de implementação.Para isso, foi projetado um
conjunto de classes que permitem analisar os erros com diferentes níveis de detalhamento.
Por exemplo, o usuário pode utilizar a classe USBException para capturar todas as exce-
ções que ocorram na comunicação. Ou poderia preferir tratarum tipo de erro específico
como erros de leitura ou escrita. Adicionalmente, ainda existe a possibilidade de saber
exatamente que tipo de erro ocorreu, inclusive em alguns casos é possível ter acesso ao
errnodisponibilizado pelo sistema operacional. A figura 4.3 mostra o modelo das classes
responsáveis pela identificação dos diferentes tipos de erros.



4.3.
S

O
F

T
W

A
R

E
D

E
A

LT
O

-N
ÍV

E
L

2
5

USBException

CloseException OpenException ReadException WriteException

HiddevClose

HidrawClose

HiddevException

HidrawException

ReportException

UnsuportedDevice

ReadBlockingError

ReadClosed

ReadUsage

ReadWrongSize

SelectException

WriteClosed

WriteSend

WriteUsage

WriteWrongSize

F
ig

u
ra

4
.3

:
S

istem
a

d
e

Testes



26 CAPÍTULO 4. DESENVOLVIMENTO



Capítulo 5

Resultados e Conclusões

Uma etapa importante no desenvolvimento de qualquer arquitetura de hardware/software
é a análise de desempenho do sistema. Para validar a arquitetura proposta nesse trabalho
desenvolvemos, como destacado anteriormente, uma pequenaaplicação que engloba dois
sensores (uma bússola e um sonar) e um conjunto de atuadores (quatro motores brushless).
Como os motores brushless funcionam em malha aberta eles nãofornecem uma resposta
mensurável em termos de comunicação. Por esse motivo, os testes executados consistem
basicamente na análise dos tempos de respostas da USB e dos sensores.

O programa de testes de alto-nível é composto por duas threads: uma de escrita e
outra de leitura. A thread de escrita envia um dado para o microcontrolador através da
USB, e fica bloqueada esperando que a thread de leitura consuma o dado. A thread de
leitura, por sua vez, fica em modo bloqueado esperando a chegada dos dados enviados
pelo microcontrolador. Durante os testes foram avaliados três fatores: a integridade dos
dados, o tempo que a thread de leitura ficou bloqueada e o tempodecorrido entre a escrita
e a leitura.

Foram feitos três experimentos diferentes. O primeiro teste consistiu em enviar uma
requisição através da USB. Neste teste, o microcontroladorrecebe uma requisição, e deve
incrementar uma variável interna e enviá-la de volta ao computador. Esse teste permite
medir os tempos de envio através da USB, sem se preocupar com os atrasos decorrentes
dos sensores.

O segundo teste utilizou uma bússola digital como base. Nesse teste foram enviadas
1.000 requisições de bússola e recebidas suas respectivas respostas. Através da análise
desses tempos é possível entender como a arquitetura se comporta ao responder a um sen-
sor com tempo de resposta rápido. O terceiro teste, por fim, teve como objetivo analisar
o comportamento da arquitetura ao lidar com um sensor que possui atraso no tempo res-
posta. Para esse teste foram feitas 500 requisições ao sonara intervalos fixos de 50ms. A
partir do atraso decorrente do envio dos dados até sua chegada é possível avaliar como os
diferentes tempos de polling da USB influenciam o comportamento do sistema.

Durante os testes percebemos alguns resultados interessantes, como destacados a se-
guir. O primeiro deles é que em nenhum dos experimentos houveperda de pacotes. Isso
ocorre por que os endpoints utilizados pela classe HID são dotipo Interrupt, esse tipo de
transferência garante a integridade dos dados e procura enviá-los em intervalos de tempo
bem definidos. Assim, se houver alguma falha no envio duranteum ciclo de polling, o
dado será enviado novamente no próximo ciclo. Outro aspectointeressante é que por uti-



28 CAPÍTULO 5. RESULTADOS E CONCLUSÕES

lizar um sistema operacional convencional não existe determinismo nos dados. Portanto,
os dados colhidos nos testes precisam ser analisados estatisticamente. A tabela 5.1 mos-
tra os resultados obtidos ao analisar-se o tempo decorrido desde o envio dos dados para o
microcontrolador até o recebimento dos dados no computador. A tabela informa a média
e o desvio padrão do tempo de espera para cada um dos experimentos citados acima.

Polling USB
USB BÚSSOLA SONAR

Média Desvio Média Desvio Média Desvio
1ms 1.988 0.151 2.072 0.308 15.908 0.071
2ms 3.961 0.729 3.965 0.821 15.907 0.107
3ms 3.962 0.927 3.961 0.756 15.913 0.075
4ms 7.959 0.223 7.959 0.259 17.917 0.090
5ms 7.960 0.295 7.960 0.340 17.927 0.092
6ms 7.961 0.199 7.958 0.156 17.927 0.075
7ms 7.959 0.332 7.962 0.283 17.918 0.182
8ms 15.972 0.637 15.959 0.085 21.898 0.235
9ms 15.956 0.210 15.955 0.193 21.903 0.167
10ms 15.962 0.074 15.957 0.112 21.909 0.033

Tabela 5.1: Médias e desvios padrão do tempo de espera em milissegundos.

Note que em todos os casos o tempo de espera real é sempre superior ao tempo de
polling da USB. Isso ocorre porque tanto o endpoint de entrada, como o de saída estão
sujeitos ao mesmo tempo de polling. Por exemplo, se o pollingé de 1ms o endpoint In
e o endpoint Out são verificados a 1ms cada, o que implica no pior caso um atraso de
2ms. Outro aspecto importante que influencia os resultados éa atuação do escalonador
do sistema operacional. Quando o processo é escalonado ele perde o domínio sobre a
CPU e pode ficar certo período de tempo bloqueado, no caso do Linux, esse tempo é de
no mínimo 10ms. Por esse motivo podem existir alguns picos deamplitude média de
10ms em alguns gráficos do tempo de espera, como na Figura 5.1.

A partir da análise dos dados acima e do estudo dos gráficos do tempo de resposta
percebemos que as melhores respostas do sistema foram com ostempos de polling de
1ms, 6ms e 10ms. O principal parâmetro dessa avaliação é a oscilação do tempo de
resposta, ou seja, o melhor tempo de resposta é aquele que no decorrer da execução menos
se afastou do valor médio. Para ilustrar alguns desses tempos de resposta as figuras 5.2,
5.3 e 5.4 mostram o comportamento do sistema para cada um dos experimentos descritos
acima, utilizando o tempo de polling de 1ms.

Assim, ao se analisar o comportamento da arquitetura de hardware/software proposta
nesse trabalho chega-se a algumas conclusões interessantes. A primeira é que a utilização
da USB comobackbonede comunicação entre um computador e um conjunto de micro-
controladores permite a construção de um sistema de comunicação extremamente rápido
e seguro. Um segundo ponto é que graças as funcionalidades disponibilizadas pela USB é
possível construir praticamente qualquer sistema robótico com arquitetura mestre-escravo
utilizando o modelo proposto nesse trabalho.



29

Figura 5.1: Tempo de resposta USB com polling de 8ms.

Um outro resultado interessante foi a possibilidade de usardiversas interfaces HID
diferentes no mesmo microcontrolador. Como destacado em seções anteriores, o sistema
operacional associa um driver a cada interface e não a cada dispositivo. Assim, utilizando
várias interfaces é possível associar cada sensor conectado ao microcontrolador a uma
interface específica. Desse modo, a nível de sistema operacional, no lugar de um único
dispositivo (o microcontrolador), o sistema visualiza três “dispositivos” (interfaces) dife-
rentes: os motores, a bússola e o sonar.

A utilização do modelo de interfaces possibilita, ao programador de alto-nível, um
modelo extremamente flexível de acesso aos recursos do robô.Por exemplo, o programa-
dor poderia definir uma classe específica para acessar e administrar cada um dos sensores,
tudo isso abstraindo a presença do microcontrolador. Uma observação interessante é que
a utilização de interfaces não diminui a taxa de transmissãodo sistema, como cada uma
dessas interfaces utiliza apenas endpoints Interrupt, a controladora USB reserva banda su-
ficiente para cada um desses endpoints. Vale lembrar que cadaum desses endpoints tem
taxa de transmissão de 64 Kbits/s, enquanto o host pode disponibilizar até 480 Mbits/s.
Portanto, é possível utilizar um número razoável de interfaces, limitado apenas pelo ta-
manho do campo de endereçamento, que suporta 128 endereços diferentes.

Por fim, o resultado mais animador do trabalho foi a possibilidade de mesmo traba-
lhando com um SO Linux convencional, poder atender a certas condições de tempo real.
Como observado nos experimentos a arquitetura tem a tendência de sempre responder
num tempo médio aceitável e com um desvio padrão pequeno. É verdade que graças a
atuação do escalador ou da carga de processos presentes no sistema, em alguns momentos
o tempo de resposta será maior do que o esperado. No entanto, se a aplicação projetada
para utilizar essa arquitetura tiver meios de se recuperar de atrasos esporádicos oriundos
do SO, a arquitetura proposta nesse trabalho poderá ser empregada.



30 CAPÍTULO 5. RESULTADOS E CONCLUSÕES

Figura 5.2: Tempo de resposta USB com polling de 1ms.

Vale salientar que no projeto AEROPETRO, onde essa arquitetura será primeiramente
empregada, as restrições de tempo real não são rígidas. Primeiro porque a utilização de
um sistema operacional de tempo real seria impraticável devido à necessidade de proces-
sar imagens. Segundo, porque o controle que será embarcado no sistema tem um tempo
de resposta compatível com os resultados da arquitetura. Osatuadores que serão empre-
gados no robô possuem um tempo de resposta de 20ms, portanto,superior aos tempos
de resposta médios obtidos nos testes. Desse modo, a arquitetura de hardware e software
desenvolvida nesse trabalho é perfeitamente adaptável para utilização em veículos aéreos
não-tripulados.



31

Figura 5.3: Tempo de resposta da Bússola com polling de 1ms.

Figura 5.4: Tempo de resposta Sonar com polling de 1ms.



32 CAPÍTULO 5. RESULTADOS E CONCLUSÕES



Referências Bibliográficas

Forum, USB Implementers’ (2001),Device Class Definition for Human Interface Devices
(HID), USB Implementers’ Forum.

Jonathan Corbet, Alessandro Rubini & Greg Kroah-Hartman (2005),Linux Device Dri-
vers, Third Edition, O’Reilly Media.

Karim Yaghmour, Jon Masters, Gilad Ben-Yossef & Philippe Gerum (2008),Building
Embedded Linux Systems, Second Edition, O’Reilly Media.

Microchip (2007),PIC 18F2455/2550/4455/4550 Data Sheet, Microchip Technologies.

usb.org (2000),Universal Serial Bus Specification Revision 2.0, usb.org.

33



34 REFERÊNCIAS BIBLIOGRÁFICAS



Apêndice A

Modelo de Mensagens

Para que o computador e o microcontrolador possam comunicar-se adequadamente é pre-
ciso estabelecer um protocolo entre eles. Com esse objetivofoi criado um pequeno pro-
tocolo de comunicação baseado em troca de mensagens para o firmware de testes. As
mensagens a seguir são divididas em quatro grupos básicos:

1. Mensagens de Motores
2. Mensagens da Bússola
3. Mensagens do Sonar
4. Mensagens de Modo de Operação

Para facilitar a compreensão das mensagens abaixo é importante compreender alguns
detalhes da notação. Primeiro, cada bloco destacado no modelo representa um byte indi-
vidual. E todas as mensagens seguem o modelo abaixo:

TIPO OPÇÕES PAYLOAD

A.1 Motores

SET_MOTORES: Cada motor é acionado por um valor entre 0-1000.
MOTORES SET_MOTORES MT1_H MT1_L ... MT4_H MT4_L

GET_MOTORES: Requisição
MOTORES GET_MOTORES

GET_MOTORES: Retorna um valor entre 0-1000 para cada motor
MOTORES GET_MOTORES MT1_H MT1_L ... MT4_H MT4_L

A.2 Bússola

REQ_BUSSOLA: Requisição da Bússola
BUSSOLA REQ_BUSSOLA



36 APÊNDICE A. MODELO DE MENSAGENS

REPLY_BUSSOLA: Resposta da requisição
BUSSOLA REPLY_BUSSOLA BUSSOLA_H BUSSOLA_L

• Retorna o valor em graus 0.00 até 360.00.
• O valor está armazenado em dois inteiros.

STATUS_BUSSOLA: Requisição
BUSSOLA STATUS_BUSSOLA

STATUS_BUSSOLA: Resposta
BUSSOLA STATUS_BUSSOLA MODO_DE_OPERAÇÃO POLLING

• MODO_DE_OPERAÇÃO: 0 (Requisição) e 1 (Automático)
• POLLING: se estiver em automático, determina de quanto em quanto tempo

envia dados.
• Caso deseje mudar do modo automático para o manual basta enviar uma

REQ_BUSSOLA.

ERROR_BUSSOLA: Inidica que ocorreu um erro no bússola
BUSSOLA ERROR_BUSSOLA

A.3 Sonar

REQ_SOANR: Requisição de Sonar
SONAR REQ_SONAR

REPLY_SONAR: Resposta da requisição
SONAR REPLY_SONAR SONAR_H SONAR_L

• Retorna a distância em cm.
• O valor está armazenado em dois inteiros.

STATUS_SONAR: Requisição
SONAR STATUS_SONAR

STATUS_SONAR: Resposta
SONAR STATUS_SONAR MODO_DE_OPERAÇÃO POLLING

• MODO_DE_OPERAÇÃO: 0 (Requisição) e 1 (Automático)
• POLLING: se estiver em automático, determina de quanto em quanto tempo

envia dados.
• Caso deseje mudar do modo automático para o manual basta enviar uma

REQ_SONAR.

ERROR_SONAR: Inidica que ocorreu um erro no sonar



A.4. MODO AUTOMÁTICO 37

SONAR ERROR_SONAR

A.4 Modo Automático

Nesse modo o sensor recebe uma requisição avisando que ele deve enviar os dados conti-
nuamente ao mestre. Esses dados são enviados a uma taxa fixa especificada na requisição.

POLLING: Configura o modo automático, e define a taxa de envio dos dados.
AUTO POLLING MS_H MS_L

• O intervalo de envio é definido em milissegundos.
• O valor máximo de 1.000, ou seja, 1 segundo.

SENSOR: Define que sensor entrará em modo de envio automático
AUTO SENSOR TIPO

• O TIPO pode ser SONAR ou BUSSOLA.

Cada uma das TAGs descritas nas mensagens acima estão definidas no arquivomes-
sageflags.h, disponibilizado no pacote da biblioteca USBRobot.




