A = e
\. Pm Am_1 4 Programa dc Agéncia
Recursos Nacion al do
Humanos Petroleo

Monografia:

Projeto de uma Arquitetura de Hardware e
Software para um Veiculo Aéreo Nao-
Tripulado para Supervisao de Instalacoes de
Petroleo

Djalma Teixeira Maranh&o Neto

Natal, Agosto de 2009

UFRN - CT - NUPEG - Campus Universitario - CEP: 59070-970 - Natal-RN - Brasil
Fone-Fax: (84) 215-3773 - www.nupeg.ufrn.br - prhanp14@nupeg.ufrn.br

Dedico esse trabalho a meus
amados pais, ndo apenas em
reconhecimento por terem me dado
vida. Mas, por sempre incutir em
mim a necessidade de lutar pelos
meus sonhos. E por estarem sempre
ao meu lado nos momentos alegres e
especialmente nos momentos
dificies. O seu amor e sua dedicacao
sao sem duvida o combustivel das
minhas realizagoes.

Agradecimentos

Ao meu orientador e ao meu co-orientador, professores Rabtielardo, sou grato pela
orientagéo e amizade.

Aos colegas Joéo Paulo e Gutemberg pelo apoio ao longo dakatb.
Aos demais colegas do Laboratério de Robotica pelas siggestériticas.
A minha familia pela compreenséo e apoio ao longo dessadarna

A ANP, pelo apoio financeiro.

Resumo

Um rob6 € um sistema heterogéneo composto de diversos dtesmenhardware e soft-
ware. Para que esse sistema funcione adequadamente é amdbestabelecer uma
arquitetura que modele suas diversas inter-relacdes mAssbbjetivo do presente tra-
balho é projetar uma arquitetura de hardware e software epdeusilizada num veiculo
aéreo nao-tripulado (VANT).

Esse tipo de robd possui requisitos bem especificos que s&mieantes no projeto
de sua arquitetura. Por exemplo, o VANT proposto no projeeRAPETRO utilizara
fortemente técnicas de visdo computacional, o que praéingerinviabiliza a utilizacéo
de sistemas operacionais de tempo real, pois, para atengaraantias de tempo os drivers
das cameras, precisam ser projetados para esse tipo dessistgue ndo acontece na
pratica. Por outro lado, controlar um sistema desse tipod®decer certas restricbes
temporais ou sob risco de falhas de comunicacdo poderindesituacdes catastroficas.
Por esses motivos é necessario propor uma arquitetura casegae as caracteristicas
dessa aplicacéo.

A arquitetura proposta nesse trabalho segue o modelo ressiravo e utiliza o pro-
tocolo USB como interface de comunicacéo. Todo o sistemarseigica atraves de um
backbondJSB que trabalha sobre um modelo de interrupcéo. Esse manomenicacao
prové ao sistema algumas caracteristicas bem interessamb®: garantia na entrega dos
pacotes de dados e especialmente que esses dados sergioesndentro de uma janela
de tempo previamente estabelecida. Assim, conforme coagogelos resultados obti-
dos é possivel construir um robd utilizando um sistema gparal Linux como base e
mesmo assim, ter certas garantias de tempo seél real-timé.

Palavras-chave Robd, arquitetura de hardware e software, mestre-esdus®8.

Abstract

A robot is a heterogeneous system composed by differenieslesnof hardware and soft-
ware. To work properly, it is extremely important to establan architecture that models
the different inter-relations between the systems. Hetheeaid of this work is proposing
a hardware and software architecture that works in an UAh{limned Aerial Vehicle).

This kind of robot needs to attend very specific requests,atereally important in
choosing an architecture. For example, the UAV in develagnmethe project AEROPE-
TRO, will use strongly computer vision techniques, makimgiactical the use of a real-
time operational system. So, to attend the real-time ragubse cameras’ drivers need
to be projected for this kind of application, what does ngigen in practice. However,
control this kind of system without any time restrictionsvath the danger of commu-
nications loss could lead to a chaotic situation. For a8, thiis important to propose an
architecture that meet all the system demands.

The architecture proposed in this work follows the mask&aresmodel and uses the
USB as the communication interface. The whole system conuates through a USB
backbone working under an interruption model. This kind @fmeunication provides
some interesting characteristics to the system, like: antaas data package deliverance
and the packages will be delivered in a fixed rate. Therefase;an be proved by the
results, it's possible to build a robot using a standard kias operational system, and
even though, attend to certain deadlines.

Keywords: Robot, hardware and software architecture, master-Sl#sB

Sumario

Sumario i
Lista de Figuras ii
Lista de Tabelas \%
1 Introducéo 1
1.1 Arquitetura de um Sistema Robético 1
2 Arguitetura do Sistema 3
2.1 Arquitetura Proposta 4
3 Comunicacao 7
3.1 Visdo GeraldoPadraoUSB 7
3.2 Protocolode Comunicagdo 8
3.21 Endpoints 8
3.2.2 Interfaces e, 10
3.2.3 Configuration 10
3.3 HID - Human Interface Devices 11
3.3.1 VisaoGeral 12
3.3.2 DescritorHID. 13
4 Desenvolvimento 15
4.1 Microcontrolador 15
411 Framework 15
4.2 Firmware 17
4.2.1 ProtocolodeAplicagdo 18
422 SistemadeTestes e 19
4.3 Software de Alto-nivel 02
4.3.1 SistemaOperacional 20
4.3.2 SubsistemaUSB 20
4.3.3 Drivers e 21
4.3.4 Biblioteca 23
5 Resultados e Conclusdes 27
Referéncias bibliograficas 32

A Modelo de Mensagens 35

Al
A.2
A.3
A4

MOLOres e 35
BUssola 35
Sonar ... e 36

Modo AUtOMALICO e 37

Lista de Figuras

2.1
2.2

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3
5.4

Exemplo de um quadrotor comercial
Arquitetura proposta para o rob6 AEROPETRO

Arquitetura de comunicagdoUSB.

Arvore de descritores.

SistemadeTestes
SubsistemaUSB noLinux
SistemadeTestes

Tempo de resposta USB com pollingde8ms.
Tempo de resposta USB com pollingde1ms.
Tempo de resposta da Bussola com pollingde Ims.
Tempo de resposta Sonar com pollingdeIms.

20
22
25

Lista de Tabelas

5.1 Meédias e desvios padréo do tempo de espera em milissegund. . . . 28

Capitulo 1

Introducao

A construcéo de um sistema robdtico € uma atividade desadiadascinante. Diferente
de outras ciéncias que estao restritas apenas a uma araahdeiooento a robotica é uma
ciéncia ampla e complexa que engloba diversos campos. $&oaté-considerar a robotica
como a arte da integracdo. Num robd sistemas elétricos,nieesde computacionais
interagem com o fim de executar tarefas cada vez mais consplexa

Por esse motivo um aspecto fundamentalmente importanteajete de qualquer
sistema robotico € a definicdo de sua arquitetura de hardvs#ware. Essa arquitetura
define como seréo feitas as inter-conexdes fisicas e |0gces0.

A arquitetura de um sistema robético deve ser projetada d@mpossibilitar ao robd
a realizacdo de suas tarefas, de acordo com certos requsgsim uma arquitetura que
poderia funcionar precisamente para um dado robd pode sgleamente inadequada
para outro. Desse modo, antes de descrevermos a arqujpety@sta nesse trabalho é
necessario compreender de modo um pouco mais claro o que érgoigeturade um
sistema robotico.

1.1 Arquitetura de um Sistema Robatico

A arquitetura de um sistema robotico refere-se a maneira@sestruturas heterogéneas
de hardware e software interagem para controlar o robd. ¥@mn@o, um sistema robo6-
tico com diversas placas embarcadas e diferentes unidadestd/are necessita de uma
interface de comunicacao e uma série de protocolos paracgsa pxecutar suas tarefas.
Assim, quando o projetista comeca a programar as interfsm@scada modulo e define
como sera feita a comunicacao entre eles, na realidadetéldaaxio os primeiros passos
na definicdo de uma arquitetura.

Vale salientar que o projeto de uma arquitetura ndo € umtataiagal. O projetista
deve muitas vezes equilibrar requisitos conflitantes. oo robd € um sistema com-
plexo que integra diversos sensores e atuadores, que podeites graus de liberdade e
que deve conciliar sistemas que $&ud real-timecom sistemas que néo precisam aten-
der aogleadlinegle tempo real. Isso implica em diferentes necessidadesi@oacao.
Enquanto por um lado se lida com sistemas sincronos que deamamstricbes tempo-
rais, por outro lado o robd também possui sistemas assivgron orientados a eventos,
gue nao possuem tal restricao.

CAPITULO 1. INTRODUCAO

Desse modo, a tarefa do projetista da arquitetura podeseniga em algumas ativi-
dades basicas:

1.

2

Analisar os requisitos do sistema.

2. ldentificar os elementos sincronos e assincronos.
3.
4. Especificar a interface de comunicacao do sistema. Eg; bedramento ou ponto

Especificar um modelo de comunicagé&o para o sistema. Estrerescravo.

a ponto.
Definir um protocolo de comunicagao.

Programar médulos de software que permitam a adming&ti@dgs recursos fisicos
do sistema.

A seguir apresentaremos a arquitetura proposta nesséhtsabanalisaremos alguns
aspectos teoricos relevantes na sua proposicao.

Capitulo 2

Arquitetura do Sistema

Como destacado na sec¢éo anterior 0 primeiro passo na defuhécéma arquitetura de
hardware e software € especificar os requisitos do sistenaaquitetura proposta nesse
trabalho tem por objetivo principal ser implantada no go@EROPETRO, em desen-
volvimento pelo Laboratério de Robética da UFRN. O projasgavconstruir um VANT
(veiculo aéreo nao-tripulado) que seré utilizado em tardéinspecao e supervisdo de
instalacGes da industria de petroleo e gas.

Os VANTs podem ser construidos sobre qualquer plataformeaa®mo um aviéo,
dirigivel ou helicoptero. Atualmente, existem muitos ptog ao redor do mundo que
utilizam helicépteros como plataforma base, gragas a sumdlidarle e a possibilidade
de voo estacionario. No entanto, helicépteros comuns ito@st modelos dindmicos
dificeis de serem controlados e com um alto nimero de vasideeestado. Por esse
motivo, costuma-se utilizar um tipo de helicoptero maispten e relativamente mais
facil de controlar: dQuadrotor.

Um Quadrotor é um tipo de helicéptero, como ilustrado na eidlil, que utiliza
quatro acionamentos fixos, colocados em cada vértice de stmauga na forma de um
quadrado com os rotores adjacentes girando em sentidowseppara equilibrar os mo-
mentos e produzir os movimentos desejados. Desse modofrolecte voo € possivel
ajustando-se a velocidade de cada um dos quatro motores.

Figura 2.1: Exemplo de um quadrotor comercial

Para cumprir seus objetivos o rob6 sera equipado com quataresbrushlese com
um conjunto de sensores que incluem: camera, sonar, IMdddaide medida inercial),

4 CAPITULO 2. ARQUITETURA DO SISTEMA

bussola digital e GPS. O rob6 contara ainda com um compugadbarcado, que sera a
unidade responsavel pelo processamento de imagens e tasoh#&ole do sistema.

Com base na descricao acima se consegue extrair algumekedataas importantes.
A primeira envolve as dimensdes do robd. Como esperadoy@sdaleve ser pequeno
para que possa navegar em diferentes tipos de ambiente.didém por utilizar motores
elétricos no seu acionamento seu peso deve ser reduzidat®efespecificacdo feita
pela equipe do projeto definiu que o robd devera ocupar nomwkin? de area e ter um
peso total de 5 kg. Tendo em vista que boa parte da carga adpielio € devida a es-
trutura mecanica e as baterias, € primordial um projeterasgo da eletrénica embarcada
para que o sistema nao ultrapasse os limites da especificacao

No que se refere a aplicacao, podem-se destacar duas dataee marcantes. A pri-
meira € que o sistema deve ser robusto e funcionar sobreitegule tempo real. Atrasos
de comunicagéo e perdas de pacotes podem ser potenciaipeeigiesos nesse tipo de
sistema. Outra caracteristica € 0 uso massivo de visédo ¢aoipoal e processamento de
imagens.

Essas duas caracteristicas geram uma situacao dificilrdeh&ar na pratica. Em-
bora por um lado o processamento de imagens sugira a uitizde um computador
embarcado com um sistema operacional convencional, aipnigureza do sistema su-
gere uma implementacdo que tenha comportamento de um aideetempo real, o que
poderia ser alcancado sem necessariamente fazer uso denputador embarcado.

A solucgédo étima seria utilizar um computador embarcado amrsigtema operacional
de tempo real. No entanto, embora essa solucéo seja matessante do ponto de vista
tedrico, na pratica ela é extremamente dificil de ser agdicaO motivo basico é que
guando se utilizam mddulos de tempo real os drivers presemtesistema operacional
convencional deixam de funcionar [Karim Yaghmour & Gerur@&Qpois, para garantir
que o sistema funcione em tempo real, o sistema operaciexaltdr certeza de que os
drivers também funcionam em tempo real, 0 que ndo aconteuetica.

Portanto, o grande desafio deste trabalho é propor uma sabugéis préxima pos-
sivel da solugdo 6tima e que permita integrar o sistema @® ées demais sensores e
atuadores. Assim, podemos resumir 0s requisitos do sisgtema

e Peso total de todos os componentes de hardware restritckg.1,5
e Utilizar um computador embarcado.
e Possibilitar que a lei de controle seja executada no cordputambarcado.

2.1 Arquitetura Proposta

Toda arquitetura € baseada num modelo abstrato que defireessdara o fluxo de co-
municacao no interior do sistema. A partir da descricao steisia chegamos a conclusao
gue omodelo mestre-escrav® a solucéo ideal para a aplicagdo. No modelo mestre-
escravo uma unica unidade de maior poder computacional §ref@ responsavel pelo
processamento e administracdo do sistema. As demais esidasl escravos) realizam
apenas tarefas especificas requisitadas pelo mestre. Narggeea comunicagao ela é
feita apenas entre 0 mestre e um escravo, nunca de escravesgaavo.

2.1. ARQUITETURA PROPOSTA 5

Embora esse modelo pareca demasiadamente restritivosfieiénte para o sistema
proposto. No nosso caso, contamos com apenas uma unidale (oeomputador em-
barcado), que é responsavel pelo processamento de imagerr@e, ja 0s escravos Sao
unidades microcontroladas responsaveis pelo acionardeatamotores, leitura de senso-
res, etc.

‘ CAMERA]

I uso

‘ COMPUTADOR]

I uso

M

I I

[MICROCONTROLADOR] [MICROCONTROLADOR]

Figura 2.2: Arquitetura proposta para o rob6 AEROPETRO

Apos definido o modelo de comunicagéo e que unidades de pesuesto utilizar,
0 proximo passo na definicdo da arquitetura € selecionar ntegfldace de comunica-
cdo. Atualmente existe uma infinidade de interfaces de cmac#o disponiveis, que
vao desde as interfaces de entrada/saida ponto-a-porte r@des.

No caso das interfaces ponto-a-ponto, a maioria dos comhpgss modernos trazem
consigo um conjunto de portas USB. A USB foi desenvolvida coabjetivo de servir
como uma interface padrao para entrada e saida de dados mputedor, substituindo
outras interfaces mais lentas como as portas paralelamess&entre as diversas carac-
teristicas da USB destacam-se:

e Protocolo de comunicacao inerentemente mestre-escravo.
¢ |dentificacdo automética de dispositivaslug and play
e Drivers de classes de aplicacdo disponiveis na maioriaist@sas operacionais.

Uma outra possibilidade seria utilizar uma rede de comgéamaomo interface de
enlace, nesse sentido a classe de redes que mais se adegsa aplcacao séo as redes
industriais, especialmente a rede CAN. A CAN (Controllee@Network) € uma rede
especialmente projetada para aplicacdes que necessiteomdeicacdo em tempo real,
ela foi criada com o objetivo de servir como um barramentoaheunicacao para dispo-
sitivos eletrénicos dentro de ambientes ruidosos comeceoiantde um automovel. Como
principais caracteristicas da CAN destacam-se:

6 CAPITULO 2. ARQUITETURA DO SISTEMA

¢ Rigido controle de erros.
e Garantia do recebimento de mensagens.
¢ Interface de comunicacéo simples. (Par trancado)

Note que ambas as tecnologias, embora muito diferentes aroatth, atendem aos
requisitos de comunicacao da arquitetura proposta. No&ngaor tratar-se duma rede a
CAN € uma solucéo mais indicada quando se trabalha com sist@istribuidos ou multi-
mestres. Além disso, a CAN nédo € uma interface nativa na ralos computadores,
por isso, é necessario adquirir placas de aquisi¢cdo ou dersdo para que 0 compu-
tador possa conectar-se a rede. A USB, por outro lado, é ulgdsoinerentemente
mestre-escravo e prontamente disponivel nos computadongsncionais. Além disso,
a USB apresenta caracteristicas interessantes comcerdégsrmodelos de comunicacéo
e a possibilidade de organizar as fungdes do dispositivocaumunto de interfaces inde-
pendentes. Por esses motivos, optamos por utilizar a USB cdarface de comunicacao
em nossa arquitetura.

De fato, o grande diferencial deste trabalho ¢é a utilizagdd$B comdyackbongou
interface de comunicacéo) do sistema. Com a utilizacdo dadssmodo de interrupcao
foi possivel atingir resultados interessantes. Como fick® no decorrer do trabalho,
o robd, mesmo sendo implementado com um sistema operatiowxl comum, obteve
resultados que permitem classifica-lo como um sistewftaeal-time desde que operando
sobre certas condicdes.

Portanto, o foco desse trabalho € como conectar os microtabres com USB inte-
grada (PIC 18F2550), com um computador rodando um sistesradpnal Linux. Para
atingir esse objetivo desenvolvemos uma biblioteca (USBRaue utiliza os drivers da
classe HID, presentes no Linux, para criar uma interfaceodeuaicagcdo em espaco de
usuario entre os programas implementados no mestre e @siiigps escravos. Ou seja,
o resultado deste trabalho é a criacdo ddnameworkque possibilita ao projetista de sis-
temas roboticos um ambiente integrado para o desenvoltanderrobds com arquitetura
mestre-escravo kackbonedJSB, sem a necessidade de utilizar um sistema operacional
de tempo real.

Capitulo 3

Comunicacao

Como discutido anteriormente, a comunicacao desempenipapeh chave em qualquer
arquitetura de hardware e software. Boa parte das casttasi de uma arquitetura sdo
dependentes de sua interface de comunicacao. Nessa saljf@amos o protocolo USB
e suas caracteristicas basicas.

3.1 Visao Geral do Padrao USB

A USB (Universal Serial Busé um meio de conexao entre um computaldoste um
certo namero de periféricos. Ela foi inicialmente criadeapsubstituir um conjunto de
interfaces de comunicagdes mais lentas como — portas [gaaderiais e de jogos — por
uma Unica interface capaz de suportar todos esses digpesifiom o passar dos tempos,
a USB deixou de ser usada apenas para conectar disposeilasxh velocidade, como
0s acima citados, e passou a ser a interface de comunicagépraticamente qualquer
dispositivo que possa ser conectado a um computador. Aalierisdo da especificacao
adicionou conexdesigh speeccom um limite de velocidade de 480 Mbps.

No entanto, diferente do que normalmente é expresso a USB naobarramento.
Na realidade, topologicamente a USB parece muito mais comamore com diversas
conexdes ponto a ponto. Ja do ponto de vista fisico, a cormxda através de quatro
fios (ground, power e dois de sinal) que conectamdawiceou umhubao computador
de modo semelhante a um par trangado Ethernet.

Adicionalmente, pode-se considerar a controladora US8epite ndostcomo sendo
0 coragao da USB. A controladora tem o dever de periodicanvenificar se @levicetem
algum dado a enviar. Gragas a sua topologia nenhum dismosSiBB pode enviar dados,
a menos que seja requisitado pélost Essa configuragdo gera um sistephag-and-
play extremamente flexivel, onde os dispositivos sdo autormaéinte configurados pelo
computador.

Do ponto de vista tecnoldgico, a USB é extremamente simpéEspassando de uma
aplicacdo mestre-escravo ondéast verifica osdevicesperiodicamente em busca de
dados. Apesar dessa aparente limitacdo, o barramento gemmad caracteristicas inte-
ressantes, como a possibilidade de um dispositivo reguisgtrta largura de banda, por
exemplo, para aplicagbes de transmissdo de audio. Ousretedstica importante é que
a USB funciona apenas como um meio de comunicacgéo, nao diedeain o formato dos

8 CAPITULO 3. COMUNICACAO

dados que trafegam sobre ela.

A especificacdo do protocolo USB define uma série de padr@todo dispositivo
de um determinado tipo pode seguir. Se o dispositivo segaasdefinicdes ele podera
utilizar umdriver padréo prontamente disponivel no sistema operacionask#erentes
padrbes sdo denominadolassese sao definicbes de dispositivos comuns que tém as
mesmas necessidades de comunica¢cdo como teclados, moystsks, dispositivos de
rede e modems. J& outros dispositivos que ndo se adequaasgadsies necessitam de
drivers especificos produzidos pelo fabricante.

Todas essas caracteristicas tornam a USB um meio de comp@migaatico e de baixo
custo para a conexao de diversos periféricos, sem a neadsgi@ reiniciar o sistema,
instalar placas e ficar perdido em meio a fios e conectores.

3.2 Protocolo de Comunicacao

Conforme destacado na sec¢éo anterior a USB € uma interfazendenicacdo extrema-
mente flexivel. No entanto, toda essa flexibilidade no niealsbiario tem um custo —
complexidade no nivel de implementacdo. Felizmente, bda pdassa complexidade é
ocultada tanto pela controladora USB quanto pelo propstesia operacional.

Em outras palavras, com a USB acontece algo semelhante aeitoode pilha de
protocolos utilizado nas redes de computadores. Por egempna implementacdo em
camadas como o modelo OSI ou TCP/IP as camadas superiowgsiteaq servicos das
camadas inferiores e fornecem uma interface para as carsape@sores. De tal modo,
que os detalhes de implementacao estédo ocultos em cada sroandadas. Com a USB
aidéia € a mesma. A controladora USB trata das questdesmtderas camadas fisica e
de enlace, enquanto fornece ao sistema operacional untadetele acesso. O sistema
operacional, por sua vez, recebe esses dados e dispanibiia interface para asivers
do dispositivo se comunicarem com o0 mesmo.

Portanto, para utilizar o protocolo adequadamente pmecsaompreender algumas
caracteristicas gerais de seu funcionamento e em espmiglcOmMo se d4 a comunicacao
com as camadas superiores.

3.2.1 Endpoints

A forma mais basica de comunicacdo sobre a USB é através deatdpecido como
endpoint Um endpoint funciona como uma via de dados unidirecioraamputador
para o dispositivo (OUT endpoint) ou do dispositivo para mpatador (IN endpoint).
Em nivel de periférico pode-se encarar o endpoint como aepemire o hardware do
dispositivo e 0 seu firmware.

J& do ponto de vista do computador os dados, sdo trocadeésatiepipes Um pipe
€ um canal légico que interconecta tnmsta um endpoint. Cadgipe possui ainda uma
série de parametros que precisam ser devidamente ajustexo largura de banda, dire-
¢do do fluxo de dados, tamanho maximo do buffer/dados e tip@dsmisséo utilizada.
Por exemplo, o default pipe é composto pelo endpoint zero tNeadpoint zero OUT
com transferéncia de dados do tigontrol.

3.2. PROTOCOLO DE COMUNICACAO 9

A USB descreve basicamente dois tipos de pipes:

Stream Pipes: esse tipo de pipe ndo possui um formato de dados definidaphaape-
nas como uma via. Os dados sao enviados sequencialmenteditegéo predefi-
nida IN ou OUT e podem ser controlados tanto gedstcomo pelodevice

Message Pipes:esse tipo de pipe tem um formato de dados bem definido. Sameont
lados pelo host. E os dados sao transferidos no sentidariathy pela requisi¢ao.
Portanto, séo bi-direcionais.

Resumindo, do ponto de vista do computador a comunicacéibacateaves de pi-
pes, enquanto a comunicacao entre a controladora e o digpagiliza o conceito de
endpoints.

Tipos de Endpoints

Um endpoint pode ser de quatro tipos diferentes. Cada uneslépss descreve como 0s
dados sao transmitidos:

CONTROL: O control endpoint é utilizado como meio de acesso paraehfes pro-
poésitos dentro do protocolo. Eles sdo comumente utilizp@oa configurar um
dispositivo, retornar informacdes de status, enviar caloampara o dispositivo ou
enviar informacdes sobre o mesmo. Esses endpoints séoln@nia pequenos, al-
guns poucos bytes, no maximo 64 bytes, e todo dispositivod&B ter o endpoint
zero IN e OUT, utilizados para tarefas administrativas.eBg® de transferéncia
tem banda garantida pelo protocolo em qualquer situacao.

INTERRUPT: Esse endpoint transfere pequenos pacotes de dados aloadreen de-
terminados sempre quehmstUSB requisita. E normalmente utilizado por dispo-
sitivos de interface como teclados, mouses e joysticksmAdéssas, aplicacdes
0 método de interrupgcédo também é utilizado para controfgoditivos, mas sem
transferir grandes quantidades de dados. Esse tipo déetr@msia tem uma banda
reservada diretamente pelo protocolo. Na USBfRIBspeedesse endpoint tem
uma banda reservada de 64 Kbps.

BULK: Os dispositivos que usam esse tipo de transferéncia pnedisansferir uma
grande quantidade de dados sem perda de informacdes. [E®ske tiransmissao
nao tem banda reservada pelo protocolo. Quando uma refiides transmissao
é feita a controladora utiliza a largura de banda disporpaeh a transferéncia.
Desse modo, sua largura de banda é dependente da cargadmsiéttransferén-
cia BULK é normalmente utilizada pflash driverse por impressoras.

ISOCHRONOUS: Esse tipo de endpoint transmite grande quantidade de dadokae
téncia constante, no entanto sem garantia de integridael@. @Eilizado por dispo-
sitivos que podem lidar com perda de dados, mas que neceggtantir um fluxo
continuo das informagfes. Essa caracteristica de tras@onésutil especialmente
na transferéncia de audio e video.

Na aplicagdo proposta nesse trabalho a USB é utilizada coeio de comunica-
céo entre os microcontroladores e o computador. Note quetggsde comunicacao

10 CAPITULO 3. COMUNICACAO

tem caracteristicas perfeitamente compativeis com asdipoit do tipo INTERRUPT.
Precisam-se transferir dados que demandam pouca largbenda como leitura de sen-
sores e referéncias para atuadores. Adicionalmente comimboérum sistema de tempo
real deseja-se que esses dados cheguem num intervalo deliempdeterminado. Por-
tanto, a utilizacdo do modo de transferéncia baseado emupgdes da a arquitetura a
possibilidade de responder em tempo real gracas as céstictes do proprio protocolo.

3.2.2 Interfaces

Na arquitetura de comunicacdo da USB os endpoints ndo sétardignte acessiveis ao
host eles estédo contidos em estruturas logicas chamatiafaces Uma interface USB
€ capaz de manipular apenas um tipo de conexao légica, pmpéxeeclado, mouse ou
uma impressora. Um dispositivo USB pode ainda ter multipleesfaces, por exemplo,
uma PABX tem uma interface para controle dos botdes do tip&ERUPT, uma interface
para impressao com endpoint do tipo BULK, e uma interfaceudéoédcom endpoint do
tipo ISOCHRONOUS para o telefone. Como as interfaces USEesegmtam funcionali-
dades basicas, cada driver USB controla uma interfacee aesdo, para o exemplo do
PABX o computador utilizara trés drivers diferentes.

Essa funcionalidade so6 é possivel porque cada perifériegistrado pela controla-
dora USB com um endereco de dispositivo e com um conjuntoaEregos de interfaces.
Essa caracteristica permite localizar a interface demti@reore de dispositivos. A figura
a seguir ilustra esse fato.

Um detalhe que talvez tenha passado despercebido € comdreladora registra o
dispositivo dentro da arvore. Para fazer isso o dispogitiecisa informar a controladora
que esta conectado e em seguida informar suas caractevidfisse processo € chamado
de enumeracae é uma parte importante do protocolo. Durante a enumeracdis:
positivo é devidamente registrado e, a partir de entdo, aatadora tem condicdes de
verificar se pode atender as necessidades de comunicacasiteetps pelo dispositivo.
Essas informagfes enviadas pelos dispositivos sao chardaedescritores

3.2.3 Configuration

Num nivel hierarquico acima da interface encontram-seaguracdesEssas estruturas
descrevem algumas caracteristicas gerais do dispositiio:cpoténcia consumida, se o
dispositivo é auto-alimentado ou alimentado pelo barramero nimero de interfaces
presentes naquela configuracdo. Quando o dispositivo mmipeocesso de enumeracao,
ele envia o descritor do dispositivo e a partir dessa infgéua controladora decide que
configuracdo usar. Vale salientar que um dispositivo podeées de uma configuracéo,
no entanto isso é pouco usado na pratica. Na maioria das werdispositivo USB tem:
um descritor de dispositivo, um descritor de configurac&ocanjunto de descritores de
interface, e por fim cada interface tem um ou mais descritteeshdpoint.

A figura a seguir da uma visdo geral do conjunto de descriememdos durante o
processo de enumeragao.

Para maiores informacdes sobre a USB queira consideraofgst00]

3.3. HID - HUMAN INTERFACE DEVICES 11

Host

|
|
|
|
|
1
|
{ ADDR =2 My Function
|
|
|
|
|
|
|

|

| |
| |
| |
| |
| |
| |
i My Function 1
| !
| |
| |
| !
| |
| |
| I

Figura 3.1: Arquitetura de comunicagdo USB.

3.3 HID - Human Interface Devices

Até o momento foram destacados alguns aspectos geraisadorfamento da USB como:
a arquitetura do protocolo e o modelo de comunicacao efftoste odevice No entanto,
para que os dados possam ser acessados em nivel de apliceg@sgario definir uma
camada de interface entre os dados provenientes da caitir@lka o sistema operacional.
Essa interface é de responsabilidadeldeer.

O driver é um programa de baixo nivel que conhece as exddaiiies do dispositivo
e que é capaz de comunicar-se com o0 mesmo. Ele também é @sgplgp implementar
uma série de funcdes (interface) que possibilitem ao satgreracional acessar aquele
dispositivo. Assim todo dispositivo conectado a USB, apsspr pelo processo de enu-
meracédo, deve ser associado a um driver para enfim ser atesssistema.

Desse modo, quando projetamos um dispositivo USB adiciograte precisamos pro-
videnciar um driver, para que o SO possa se comunicar conposiis’o. No entanto,
implementar um driver ndo é uma tarefa facil. Pois, o progion precisa estar fami-
liarizado com as estruturas, funcdes e excentricidadegekdo sistema operacional.
Felizmente, a USB trabalha com um conceito extremamenj® @anceito de classes de
dispositivos.

Como destacado anteriormente, existem dispositivos gesupm caracteristicas e
necessidades de comunicacao semelhantes. Esses disggsitiiem ser agrupados em
classes e ao invés de implementar um driver para cada noposiigo basta ter um

12 CAPITULO 3. COMUNICACAO

Device
Descriptor

Configuration

Descriptor
I I
Interface Interface
Descriptor Descriptor
Endpoint Endpoint Endpoint Endpoint Endpoint Endpoint
Descriptor Descriptor Descriptor Descriptor Descriptor Descriptor

Figura 3.2: Arvore de descritores.

driver da classe. Existem trés grandes classes de dispssttbmumente associados a
USB: dispositivos de interface humana (HID), dispositidesarmazenamento em massa
(MSD) e dispositivos de comunicacdo (CDC). Cada uma dedaases ja possui um
driver implementado na grande maioria dos sistema operaisio

Portanto, se adequarmos o firmware de nosso dispositivospareompativel com
uma dessas classes nao havera necessidade de implemedtaraum

3.3.1 Visao Geral

Apos analisar os requisitos de comunicacdo demandadosopsa aplicacdo chegamos
a conclusao que podiamos adequar nossos microcontratealotasse HID. Essa classe
€ normalmente utilizada para conectar dispositivos queagem diretamente com o ser
humano, através de entrada e saida de dados como: moukedecjoysticks. Embora
0 home dé a impressao que apenas dispositivos que interageim ltomem facam parte
dessa classe. Outros dispositivos com necessidades daicagao semelhante também
fazem parte de sua especificagao.

No que se refere a comunicacgéo, os dispositivos HID possetympenos dois end-
points: um endpoint de controle (default) e um interruptpenat de entrada. Opcional-
mente um interrupt endpoint de saida também pode ser addnanmesma interface. O
endpoint default é utilizado para enviar as mensagens @traitivas tipicas da USB e
as requisicdes HID como: pedido ou notificagdo de envio. Jatesupt endpoints séo
utilizados para o envio de dados.

Para compreendermos como se da esse modelo de comunicagéiteo®o exemplo
de um teclado USB. A cadamilissegundos (valor estipulado no descritor do interrupt
endpoint) ohostenvia para adeviceuma mensagem perguntando se 0 mesmo possui
dados a enviar. Se @evicepossuir dados, no caso do teclado uma ou mais teclas que
foram pressionadas, ele devera confirmar a disponibilidaddados e envia-los atraves
do interrupt endpoint de entrada. Os dados sdo entdo resepalo driver HID que
repassara os dados para interface do sistema operacional.

3.3. HID - HUMAN INTERFACE DEVICES 13

3.3.2 Descritor HID

Um ponto importante que precisa ser compreendido é queerdfhd é um driver padrao
gue deve funcionar para uma infinidade de dispositivos. &laemcar esse objetivo o
HID usa uma idéia interessante: o dispositivo deve descref@mato de seus dados e
informar para que o dado serve. Essas informacdes sdo a€pagsara o driver através
de um tipo especial de descritor, chamaddtie descriptor.

Diferente dos descritores estudados anteriormente oitbgddiD ndo € um conjunto
de dados guardados na ROM do microcontrolador. Na realidatiscritor HID é um
conjunto de mensagens que séo enviados para o driver apges dgef@numeracdo. Essas
mensagens sao interpretadas pelo driver através deatser, que ao final do processo,
sabe o formato e o significado das mensagens enviadas petsitis.

Vale salientar que os descritores HID permitem descrevaramero infinito de men-
sagens, o que prové grande flexibilidade a essa classe. étopkx atualmente simulado-
res de avido, equipamentos de realidade virtual, instrtoadrospitalares e uma grande
quantidade de outros dispositivos comunicam-se atravéssse HID.

Mas, toda essa flexibilidade tem um custo. Além da compleeidi implementagéo
do parser, a prépria escrita do descritor pode constituir-se numgsse exaustivo. Para
maiores informacdes a respeito da classe HID queira caasiffeorum 2001].

14

CAPITULO 3. COMUNICACAO

Capitulo 4

Desenvolvimento

Como destacado anteriormente, uma arquitetura de haréveaféware tem por objetivo
descrever como se dard a comunicacédo entre as diversasgatts sistema roboético. A
arquitetura proposta nesse trabalho utiliza duas unida@gsas: os microcontroladores
e 0 computador.

Contudo, a comunicacéo entre as diferentes unidades caoiuogis ndo ocorre na-
turalmente. Antes, é preciso estabelecer um protocole ehds. Ou seja, é necessario
programar os microcontroladores e o computador de tal foyumeaa comunicagéo entre
eles seja possivel.

4.1 Microcontrolador

Considerando o modelo mestre-escravo, utilizado nesset@r@s microcontroladores
desempenham o papel de escravos. Eles sdo responsaveidgmns tarefas de baixo
nivel associadas ao rob6é como: interfacear sensores, gjepeas para acionamento de
atuadores etc.

Na arquitetura proposta nesse trabalho utilizou-se o moeriwolador PIC 18F2550
[Microchip 2007], fabricado pela Microchip Technology.gesmicrocontrolador tem im-
plementado um hardware capaz de comunicar-se diretanenta SB, sem a utilizacéo
de transciever externo. Além disso, ele possui uma sérieilesorecursos que o torna
altamente flexivel e ideal para aplicaces dedicadas. ®elds podemos destacar:

Diversos pinos de E/S digital (24 pinos).
Conversores AD (10 canais).

Quatro Timers.

Interrupcdes com prioridade ajustavel (19 tipos).
Dois médulos CCP (Capture/Compare/PWM).
Modo de operacéo economizador de energia.
Comunicacéo serial: USART, SPI e I2C.

4.1.1 Framework

Para propiciar que seus microcontroladores se comuninasavés da USB a Microchip
desenvolveu um framework. Esse conta com uma API que implenaepilha de proto-

16 CAPITULO 4. DESENVOLVIMENTO

colos utilizada pela USB, bem como uma API para cada uma dasipais classes de
dispositivos. Esse framework ainda disponibiliza umaesdei cddigos fontes e exemplos
compilados de diferentes aplica¢gdes utilizando as furatidades USB.

Embora o framework da Microchip forneca uma fonte inestiehée ajuda no desen-
volvimento de aplicagfes embarcadas. Vale salientar qgeeferamenta ainda esta em
desenvolvimento e que para utiliza-la efetivamente enefosjreais o programador deve
adaptar seus cédigos a sua realidade.

Por exemplo, no caso do PIC 18F2550 nenhum dos cédigos fprasentes no fra-
mework fora projetado para esse tipo de microcontroladssim, antes de implementar
qualquer firmware de teste, um bom tempo foi despendido mhaptar os codigos do
framework para o microcontrolador utilizado no projeto.

Embora ndo tenhamos o objetivo de explicar detalhadamefieaionamento do
framework, compreender algumas de suas caracteristicasuidamental importancia.
Um primeiro aspecto é que todas as fun¢bes da API podem saiddis em dois grandes
grupos:

1. Funcdes da pilha de protocolo
Fungdes Administrativas
Funcdes de Callback

2. Funcoes da Classe de Dispositivo

As fungbes administrativas, como o proprio nome indicayegponsaveis por cuidar
dos detalhes do protocolo. Essas funcdes séo responsélasstimcas de mensagens
durante o processo de enumeracao, pela definicdo do estapedegdo, administragéo
dos endpoints etc.

Todas essas fungdes sdo praticamente ocultas ao deseloraleesoftware embar-
cado. No entanto, uma dessas funcdes € de importancia atabgom funcionamento
do sistema: a funcdoSBDeviceTasksEssa fungéo é a principal do ponto de vista do
dispositivo. Ela é responséavel por implementar a maquirestiglos da USB, e por isso,
deve ser chamada periodicamente para receber os pacatesata pilha de protocolos.

Um detalhe interessante é que essa funcédo deve ser chamada 200us durante
0 processo de enumeracdo. Note que esse tempo € extrem@p@gueao para a mai-
oria das aplicagfes praticas. No entanto, essa restriclax@da apds a enumeragao.
Na realidade, ap0s a enumeracao essa funcao deve ser ctamaaidamente quanto
0s envio de dados para o computador. Vale salientar que wsSaof pode ser chamada
explicitamente no main, funcionando em modo de polling odepse utilizar o modo de
interrupcao. A vantagem de utilizar o modo de interrupcaonetayprogramador nao pre-
cisara se preocupar com essa funcao, pois sempre que homamssidade de atualizar a
maquina de estados da USB uma interrupcao sera gerad&BReviceTasksera auto-
maticamente chamada. E para efeitos préaticos essa fungéertetorno de 50 ciclos de
maquina para ser executada.

Ainda no que se refere as funcdes da pilha de protocoloeexias funcdes de call-
back. Essas func¢des servem para o tratamento de situag@esfiess dentro do proto-
colo. Por exemplo, a funcA3dSBCBSuspend utilizada para executar tarefas impostas
pelo programador quando o dispositivo entrar em modo sssg@la USB (o que indica

4.2. FIRMWARE 17

uma inatividade durante 3ms). Vale salientar que essadésrgm sua maioria estao ape-
nas declaradas no codigo, sendo de responsabilidade dapadpr sua implementacéo.

J& as funcbes de classe de dispositivo sdo func¢des de npeglsudependentes das
funcdes da pilha USB. Essas fung¢des sdo responséaveis pelmicacdo do firmware
com o driver da classe. No caso da classe HID utilizada nesgst@a interface com o
driver se da atraves de cinco funcdes basicas:

USBCheckHIDRequest: utilizada pela fungéo de callback USBCBCheckOtherReq para
informar que no endpoint default trafegam, além de infoldeadipicas da pilha,
funcdes pertinentes a classe de dispositivo.

HIDTxPacket: utilizado para enviar dados através de um interrupt endmsipecifi-
cado.

HIDRxPacket: utilizado para receber dados através de um interrupt endpspecifi-
cado.

HIDTxHandleBusy: retorna se o microcontrolador esta com o controle do entdggm
caso da transmissao, isso indica que n&o existe nenhursaniea@o pendente.

HIDRxHandleBusy: retorna se o microcontrolador esta com o controle do entdpggm
caso da recepgdo, isso significa que h& dados disponiveidfeode leitura.

Novamente, vale salientar que o framework USB da Microclviplaaesta em de-
senvolvimento. Desse modo, algumas funcionalidades gndardo ser alteradas ou
adicionadas. Mas, de modo geral, ele ja oferece atualmemtojunto de funcdes su-
ficientes para o desenvolvimento de uma infinidade de apksagtilizando a USB. Para
maiores detalhes sobre o framework queira analisanv.microchip.cone informacdes
pertinentes no documento USB Device Library Help.

4.2 Firmware

Ao se deparar pela primeira vez com o emaranhado de funcOepimas utilizados
pelo framework da Microchip o programador pode facilmemiatis-se intimidado. No
entanto, com um pouco de paciéncia é possivel compreendeutuea l0gica do mesmo
e fazer algumas adaptacdes que facilitam o desenvolvinderaplicacdes futuras.

Existem alguns arquivos do framework que séo utilizadosfcegiiéncia e que devem
ser devidamente editados pelo programador. Entre elesgmdestacar:

e HardwareProfile.h: esse arquivo contém um conjunto de defini¢cdes especificas do
hardware do usuario que seréo utilizados no main. Por exempiemonicos de
periféricos como LEDs, MOTORES e etc.

e usb_config.h: contém uma série de definicdes de configuragéo do protocolo. E
nesse arquivo que o programador define se utilizara o USBBE&sks em modo
de polling ou interrupcao; define como sera o sistema dermédfgfio usado pelo
hardware; as configuracdes de velocidade; configuracOessdetdres etc.

e usb_desciptors.c:esse arquivo contém a arvore de descritores do dispoditas.
critores de dispositivo, configuracao, interface, endpoite classe.

18 CAPITULO 4. DESENVOLVIMENTO

e Mmain.c: arquivo principal.

O programador deve atentar que as configuragdes do microladr sejam feitas
adequadamente. Para isso existe uma funcdo chamadazegidtem() que € responsa-
vel pela configuracdo bruta da USB. Qualquer outro tipo dealizacdo deve ser feita
através da funcéo Userlnit(), implementada pelo programad

Outro aspecto importante € como o programador deve orgagmacodigo para tirar
0 maximo de proveito do framework. Por exemplo, uma anétiseriosa dos diversos ar-
quivos main presentes no framework ilustra uma sub-divde&se codigo em pelo menos
quatro secoes distintas que devem ser devidamente praggama

e Tratamento de interrupgdo: Os microcontroladores PIC pemmque o progra-
mador utilize fungbes para o tratamento de interrupcdepedidficamente o PIC
18F2550 permite classificar as interrupgdes por classerrugcdoes de alta e de
baixa prioridade.

e ProcesslO: Essa funcdo permite ao programador trataadiegite as mensagens
recebidas através da USB. Isso possibilita separar nigdta codigo responsavel
pela comunicacao do restante do programa.

e Funcoes de Callback: Como destacado anteriormente existearsérie de situa-
¢Oes dentro do protocolo USB que podem ser importantes pécagio. Essas
situacdes podem ser devidamente tratadas utilizando eSdamle callback.

e Demais fungdes: sdo fungdes auxiliares definidas pelo iosseatependentes da
aplicacao.

4.2.1 Protocolo de Aplicacdo

Até o momento foi compreendido que toda tarefa de comuricagée o dispositivo e o
computador, do ponto de vista de firmware, & devidamengdiagtelas fungdes da API
da Microchip. A tarefa do programador no que tange a comgaaeesume-se a prover
a descricao dos dados que trafegaréo pela USB.

Essa descricao é feita através do conjunto de descritdegsino capitulo trés. As-
sim, antes de implementar qualquer logica referente aagg@lao projetista deve especi-
ficar esses descritores criteriosamente. Apés estudarneysas configuracdes possiveis
desses descritores selecionamos um modelo basico quegrafeentemente usado em
aplicacdes de robotica.

Esse modelo utiliza uma Unica interface HID, e procura chies vias de dados inde-
pendentes uma para entrada e outra para saida. Uma rapida ¢k seu descritor HID
deixa claro que o sistema trabalhara com dois endpoints,euemtlada e outro de saida,
ambos de 64 bytes. Cada endpoint é codificado para trabalhaunidades de 8-bits,
sem codificagéo de sinal (valores de 0-255) e indexados @e 0-6

/IDescritor Especifico da Classe HID
ROM struct{BYTE report[HID_RPTO1_SIZE];}hid_rpt01={

{
0x06, 0x00, OxFF, /| Usage Page = OxFFFF (Vendor Defined)

4.2. FIRMWARE 19

0x09, 0x01, Il Usage
OxAl, 0x01, /I Collection (Application)
0x19, 0x01, I Usage Minimum (Vendor Usage = 0)
0x29, 0x40, Il Usage Maximum (Vendor Usage = 64)
0x15, 0x00, Il Logical Minimum (Vendor Usage = 0)
0x26, OxFF, 0x00, // Logical Maximum (Vendor Usage = 255)
0x75, 0x08, I Report Size 8 bits (one full byte)
0x95, 0x40, I Report Count 64 bytes in a full report.
0x81, 0x02, Il Input (Data, Var, Abs)
0x19, 0x01, Il Usage Minimum (Vendor Usage = 0)
0x29, 0x40, Il Usage Maximum (Vendor Usage = 64)
0x91, 0x02, I Output (Data, Var, Ads)
0xCO0}

h /I End Collection

Note que a descricdo dos dados é extremamente genéricaapo peotocolo ndo
especifica em detalhes a forma dos dados que trafegardoastt88. Essa caracteris-
tica pode entéo ser utilizada para gerar um protocolo deagéo baseado em troca de
mensagens. Onde o desenvolvedor do software embarcadmgrampeador de alto nivel
especificam um conjunto de mensagens que serao trocada® enicrocontrolador e o
computador. Embora essa abordagem seja extremamentesjmgpratica ela apresenta
bons resultados. Tendo como principal vantagem a criacaondprotocolo facilmente
extensivel e de facil manutencéo.

Por outro lado, 0 modelo de troca de mensagem tem como palr@gvantagem néo
disponibilizar ao computador meios de descobrir como sauatar com o dispositivo.
Em outras palavras, o programador de alto-nivel precishezmr o protocolo de comu-
nicacao antes de se comunicar com dispositivo. Assim, pedmnsiderar esse modelo
como sendo orientado pelo dispositivo. Por exemplo, se gransador de alto-nivel de-
sejar ler os dados de um determinado sensor ele precisaa@aviamente com que
microcontrolador se comunicar e enviar um conjunto de ngarsaapropriadas, para en-
fim receber os dados do sensor.

4.2.2 Sistema de Testes

O firmware de testes implementado tenta se aproximar o mgassivel de sua aplica-
céo pratica num VANT. Onde um grande conjunto de sensoraesgda@tes estara conec-
tado ao mesmo microcontrolador. No sistema de testes, ocoictrolador € responsavel
pela interface de quatro motores brushless, uma bussadlal @gm sonar com o compu-
tador.

Para possibilitar essa comunicacao foi especificado umegpeqgeonjunto de mensa-
gens, conforme o apéndice A. Além disso, procuramos expbocanceito de interfaces
disponibilizado no padrdo USB. Para isso, fizemos algumaptagdbes no framework
Microchip para que fosse possivel trabalhar com variasfates HID diferentes.

20 CAPITULO 4. DESENVOLVIMENTO

COMPUTADOR
SONAR > MICROCONTROLADOR < BUSSOLA
MOTOR MOTOR MOTOR MOTOR

Figura 4.1: Sistema de Testes

4.3 Software de Alto-nivel

Nessa sec¢do seré descrito o conjunto de softwares de efioresponsavel pelo enlace
entre o dispositivo USB e o computador. O objetivo dessa darda software € tornar
0s recursos disponibilizados no microcontrolador visiw programador de alto-nivel.
Essa abstracéo é feita através de um conjunto de classesrquitepn ao usuario interagir
diretamente com o microcontrolador, sem conhecer os @stale implementacao do
protocolo de enlace.

4.3.1 Sistema Operacional

Para acessar qualquer recurso de hardware um programa elndenivsuario deve fazer
requisicées ou chamadas ao sistema operacional. O sisparecmnal entdo se comuni-
cara com o dispositivo, fazendo uma ponte entre o hardwam@wama. Portanto, para
compreender como se dard a comunicagdo atraves da USB énfemidd compreender
como o sistema operacional processa esses dados.

E evidente que cada sistema operacional tratara as opsi@ed®© de forma diferen-
ciada. Assim, nos concentraremos em compreender comoogesagdes sdo tratadas no
Linux, sistema operacional utilizado nesse desenvolvimevale salientar ainda, que a
biblioteca desenvolvida nesse trabalho funciona apenasnia. Mais especificamente
nas versdes do kernel a partir da 2.6.24

4.3.2 Subsistema USB

Todo sistema operacional é divido em diversos subsisteasp®nsaveis por tarefas es-
pecificas. Entre esses subsistemas, o deitiQuf/outpu) € especialmente importante

4.3. SOFTWARE DE ALTO-NIVEL 21

guando se trabalha com interfaceamento de hardware. Qvobjitisse subsistema é
tornar visivel aos usuarios os elementos de hardware @ulescao computador.

Essa tarefa é bastante desafiadora do ponto de vista cotopaladde um lado, o
subsistema de 1/0O deve lidar com hardwares com caractedsiie comunicacdo muito
diferentes, por exemplo, um modem e uma impressora. Pay,qurecisa fornecer uma
série de interfaces padronizadas para os usuarios do gistem

Para lidar com esses desafios o Linux organiza seu subsideeff@ em duas partes
nitidas. Os drivers, que sdo programas basicos resposgmleiinterfaceamento com o
hardware. Esses programas conhecem as necessidadeste@daelrs da comunicacao
de cada dispositivo e sdo essenciais para a comunicacaémd?@ e o dispositivo. Sem o
driver adequado, fornecido pelo fabricante, € impossim@imicar-se com o dispositivo.

Outra parte importante do subsistema de 1/0 séo as camayleadd@e interface. Es-
sas camadas intermediarias estéo localizadas logicam@nta dos drivers e sao respon-
saveis por proverem servigcos ao sistema operacional atdavédrivers. Essas interfaces
incluem dispositivos com caracteristicas de comunicagéeca. Por exemplo, um lei-
tor de DVD, tem caracteristicas de comunicacéo idénticas BHD e portanto ambos sé&o
tratados como dispositivos de bloco pelo Linux. Enquantaectado e um mouse sao
tratados como dispositivos de caracteres.

A USB, como era de se esperar, deve ser tratada pelo sistaracmmal através do
subsistema de I/O. No entanto, gracas a suas caracteyigtidiculares, a USB precisa
de um tratamento especial no subsistema de 1/O. A figura ds®al a arquitetura do
subsistema USB do Linux. Para maiores informacdes sobresissema USB e como séo
implementados odevicedrivers considere [Jonathan Corbet & Kroah-Hartman 2005].

Essa figura deixa claro que a controladora USB é diretamesp@nséavel pelo enlace
entre o device e o0 host. Em seguida uma camada de softwamaéati@ria, a USB-Core,
€ responsavel por prover uma interface entre a controladodriver do dispositivo. Esse
driver pode ser tanto um driver de classe (HID, CDC ou MSDipn@@m driver propri-
etario. Em seguida o driver deve comunicar-se com as candadaterface, exatamente
como descrito anteriormente.

4.3.3 Drivers

Como destacado até o momento os drivers desempenham umvjgapeb interfacea-
mento entre o dispositivo e o sistema operacional. Quanddispositivo USB € co-
nectado ao computador automaticamente o Linux associa é@nede drivers aquele
dispositivo. Se o dispositivo implementar as funcdes dsseldlID, dois drivers espe-
cificos serédo associados ao dispositivo: o HIDDEV e o HIDRAA&kes drivers geram
automaticamente urfile descriptorresponsavel por representar o dispositivo dentro do
sistema operacional.

Essefile descriptoré um tipo de descritor de arquivo especial, pois representadist
positivo ndo um ponteiro para um conjunto de dados armapemadinidade fisica. No
entanto, assim como um arquivo convencional, é possiveliexeuma série de opera-
cOes sobre esse descritor. Isso significa que a interfadstdma operacional responsavel
pelas transacdes com Uite descriptorque representa um dispositivo e um arquivo con-

22 CAPITULO 4. DESENVOLVIMENTO

User

VFS blodk Net Char TTY

layer layer layer lzyer layer
y y 4 4 y fernel

USE Device Drivers

USE Core

1158 Host Controllers

Hardware

Figura 4.2: Subsistema USB no Linux

vencional sdo muito parecidas.

Por exemplo, todo driver presente no sistema operacionalfdenecer a camada de
aplicacdo um conjunto de interfaces que possibilitaraavaucicacéo com o dispositivo.
Embora essa interface possibilite uma infinidade de funcg@lgsmas sao prioritarias.
Essas fungbes incluem: Open, Close, Read, Write e opciemdnuma fungéo genérica
chamada loctl, responsével por configurar o dispositivardesutras funcionalidades.
Com essas funcbes devidamente implementadas um prograival al@ usuario tem
totais condi¢cdes de se comunicar com um dispositivo de leaedwNote ainda que com
excecao da loctl as demais fungces possuem a mesma send@ngicas correspondentes
em arquivos convencionais.

Um aspecto importante € que ambos os drivers (HIDDEV e HIDR#plementam,
como era de esperar, as mesmas funcionalidades. E ambasnfamccomunicando-se
com um driver de baixo nivel chamado hid-core. Esse Ultimespansavel pela troca de
mensagens com o dispositivo e implementa o parser capaadieir os descritores HID.
Assim, tanto o HIDDEV como o HIDRAW funcionam na verdade conmoa interface
entre o programa a nivel de aplicacéo e o hid-core.

Uma pergunta importante €: por que o sistema operacionatiasssses dois drivers
ao hid-core? O principal motivo € que o desenvolvimento tig;8es HID ainda estd em
andamento no Linux. Esses drivers foram criados em difeseffiocas e com diferentes
objetivos. O HIDDEYV, por exemplo, foi criado com o objetive criar uma interface HID

4.3. SOFTWARE DE ALTO-NIVEL 23

padrédo. No entanto, esse driver utiliza amplamente camxeilnomeclaturas baseados
no padréo HID, que vale salientar, é algo extremamente @mplsso acabou tornando
o driver excessivamente complexo e com poucas aplicacadsgs. Junte a esse fato a
pouca documentacéo disponivel sobre o mesmo, e vocé eam@atmotivo porque é tao
complexo o desenvolvimento de solugdes HID para o Linux.

O HIDRAW, por outro lado, surgiu como uma “solucao” para asapemas HIDDEYV,
e serve como um modo unificado de se comunicar mndevicesatravés da USB ou
Bluetooth. Sua filosofia é lancar toda a complexidade dapgreé&acdo das mensagens
HID para o nivel de aplicacdo. Assim o programador de akel@ que deve interpretar
a semantica das mensagens HID e ndo o driver. Uma observapaéotante € que o
HIDRAW nasceu para substituir o HIDDEV, no entanto, comaeessnda tem alguns
problemas de implementacdo, em especial na interface diéaesdinda levara certo
tempo até tornar-se o padrao do Linux.

4.3.4 Biblioteca

Na sec¢ao anterior foram destacas as interfaces do Linuzaakils para comunicagao com
dispositivos HID. E facil perceber que essas solu¢desithaimente ndo permitiriam a
construcao de uma biblioteca de comunicacgéao eficiente.eDeedo, a idéia basica que
utilizamos para desenvolver a biblioteca USBRobot foi epitar o que cada uma dessas
interfaces possui de melhor.

Inicialmente, foi observado que o driver HIDDEV possilailim meio eficiente de
escrita, ou seja, transmissao de dados para o dispositpds Am estudo exaustivo de
seu codigo fonte foi possivel estabelecer a comunicacamatispositivo. Essa comuni-
cacao é feita através de um conjunto de estruturas casdict@sido driver e um conjunto
de chamadas IOCTL. Uma observagao interessante é que sésvanteriores do driver
era necessario realizar uma chamada de sistema operguoaalada byte a ser enviado,
0 que é extremamente custoso. Nas versées mais recentes$digl enviar dados uti-
lizando apenas duas chamadas de sistema operacional: tara@atagem do pacote e
outra para enviar o pacote. O HIDDEV também conta com umé&fae eficiente para
comunicacao nao bloqueante, onde suas estruturas insfoagualizadas automatica-
mente em nivel de kernel.

No entanto, percebeu-se que o HIDDEV era extremamenteigmgicna leitura blo-
queante. Por algum motivo, sua implementacéo fazia quemdédos fossem perdidos,
e portanto, ndo visiveis a nivel de aplicacéo. Por outro, ladisterface HIDRAW, como
foi projetada em especial para leitura de dispositivostemamente eficiente nesse sen-
tido. Por esse motivo, as funcdes de leitura bloqueantenfargplementadas utilizando o
HIDRAW como base. A seguir encontra-se uma lista das prai€ifpn¢cées implementa-
das pela USBRobot.

USBrobot Construtor da classe.

~“USBrobot Destrutor da classe

openDevice Abrir o dispositivo.

closeDeviceFechar o dispositivo

writeDevice Escrita ndo bloqueante no dispositivo.

24 CAPITULO 4. DESENVOLVIMENTO

readDevice Leitura ndo bloqueante do dispositivo.
readBlocking Leitura bloqueante do dispositivo.

setDeviceld Definir id de produto a ser verificada pela classe.
getDeviceld Retornar id do produto.

setVendorld Definir id do vendedor a ser verificada pela classe.
getVendorld Retornar id do vendedor.

getinSize Tamanho do endpoint de entrada.

getOutSize Tamanho do endpoint de saida.

Além de possibilitar um acesso mais simples e intuitivo agpasitivos USB, a classe
USBRobot conta ainda com um esquema de tratamento e recapel@erros. O objetivo
do modelo de tratamento de excegdo implementado na clagssi@iptar ao programa-
dor de alto nivel total controle sobre o que esta aconteceadomunicagéo, no entanto,
sem sobrecarrega-lo com muitos detalhes de implementRe&a.isso, foi projetado um
conjunto de classes que permitem analisar os erros corsuliésrniveis de detalhamento.
Por exemplo, o usuario pode utilizar a classe USBExceptioa papturar todas as exce-
cbes que ocorram na comunicacdo. Ou poderia preferir tratdipo de erro especifico
como erros de leitura ou escrita. Adicionalmente, aindate)a possibilidade de saber
exatamente que tipo de erro ocorreu, inclusive em alguras@possivel ter acesso ao
errnodisponibilizado pelo sistema operacional. A figura 4.3 meogtmodelo das classes
responsaveis pela identificacado dos diferentes tipos ds.err

S9)S9] ap ewWa)SIS £ einbiq

USBException

!

CloseException
HiddevClose
HidrawClose

OpenException

HiddevException
HidrawException

ReportException

UnsuportedDevicg

i
1

ReadException

ReadBlockingErro
ReadClosed
ReadUsage

ReadWrongSize

SelectException

WriteException

WriteClosed
WriteSend

WriteUsage

WriteWrongSize

i

13AIN-OLTV 3d FHVMLHAOS €V

ST

26

CAPITULO 4. DESENVOLVIMENTO

Capitulo 5

Resultados e Conclusoes

Uma etapa importante no desenvolvimento de qualquer atqratde hardware/software
€ a analise de desempenho do sistema. Para validar a arqujedposta nesse trabalho
desenvolvemos, como destacado anteriormente, uma peapigacao que engloba dois
sensores (uma bussola e um sonar) e um conjunto de atuagioae® (motores brushless).
Como os motores brushless funcionam em malha aberta elédsm&ocem uma resposta
mensuravel em termos de comunicacdo. Por esse motivo tes éagcutados consistem
basicamente na analise dos tempos de respostas da USB eislo®ese

O programa de testes de alto-nivel € composto por duas threada de escrita e
outra de leitura. A thread de escrita envia um dado para cogoatrolador através da
USB, e fica bloqueada esperando que a thread de leitura carsuai@do. A thread de
leitura, por sua vez, fica em modo bloqueado esperando ad#elgs dados enviados
pelo microcontrolador. Durante os testes foram avaliadissfatores: a integridade dos
dados, o tempo que a thread de leitura ficou bloqueada e o @@cpaido entre a escrita
e a leitura.

Foram feitos trés experimentos diferentes. O primeir@teshsistiu em enviar uma
requisicao através da USB. Neste teste, o microcontrotadebe uma requisicao, e deve
incrementar uma variavel interna e envia-la de volta ao caatjpr. Esse teste permite
medir os tempos de envio através da USB, sem se preocuparsatrasos decorrentes
dos sensores.

O segundo teste utilizou uma bussola digital como base.eNeste foram enviadas
1.000 requisi¢cdes de bussola e recebidas suas respeetyastas. Através da analise
desses tempos € possivel entender como a arquitetura sert@apresponder a um sen-
sor com tempo de resposta rapido. O terceiro teste, por fmctemo objetivo analisar
0 comportamento da arquitetura ao lidar com um sensor gugelpasaso no tempo res-
posta. Para esse teste foram feitas 500 requisi¢cdes aossimtarvalos fixos de 50ms. A
partir do atraso decorrente do envio dos dados até sua chégaatsivel avaliar como os
diferentes tempos de polling da USB influenciam o comportameo sistema.

Durante os testes percebemos alguns resultados intelesssaomo destacados a se-
guir. O primeiro deles & que em nenhum dos experimentos hmerda de pacotes. Isso
ocorre por que os endpoints utilizados pela classe HID sdipddnterrupt, esse tipo de
transferéncia garante a integridade dos dados e procuiles\em intervalos de tempo
bem definidos. Assim, se houver alguma falha no envio duramteiclo de polling, o
dado sera enviado novamente no préximo ciclo. Outro asjret@ssante € que por uti-

28 CAPITULO 5. RESULTADOS E CONCLUSOES

lizar um sistema operacional convencional néo existe h@é&mo nos dados. Portanto,
os dados colhidos nos testes precisam ser analisadostesdatente. A tabela 5.1 mos-
tra os resultados obtidos ao analisar-se o tempo decoreshiech envio dos dados para o
microcontrolador até o recebimento dos dados no computAdabela informa a média
e 0 desvio padréo do tempo de espera para cada um dos exdesmiggados acima.

PollingUsB | USB__ | BUSSOLA | SONAR
Média | Desvio| Média | Desvio| Média | Desvio

1ms 1.988 | 0.151 | 2.072 | 0.308 | 15.908| 0.071
2ms 3.961 | 0.729 | 3.965 | 0.821 | 15.907| 0.107
3ms 3.962 | 0.927 | 3.961 | 0.756 | 15.913| 0.075
4ams 7.959 | 0.223 | 7.959 | 0.259 | 17.917| 0.090
5ms 7.960 | 0.295 | 7.960 | 0.340 | 17.927| 0.092
6ems 7.961 | 0.199 | 7.958 | 0.156 | 17.927| 0.075
7ms 7.959 | 0.332 | 7.962 | 0.283 | 17.918| 0.182
8ms 15.972| 0.637 | 15.959| 0.085 | 21.898| 0.235
9ms 15.956| 0.210 | 15.955| 0.193 | 21.903| 0.167
10ms 15.962| 0.074 | 15.957| 0.112 | 21.909| 0.033

Tabela 5.1: Médias e desvios padréo do tempo de espera essegilindos.

Note que em todos 0s casos o0 tempo de espera real € sempiliersapéempo de
polling da USB. Isso ocorre porque tanto o endpoint de eatradmo o de saida estao
sujeitos ao mesmo tempo de polling. Por exemplo, se o padlidg 1ms o endpoint In
e 0 endpoint Out sdo verificados a 1ms cada, o que implica macagm um atraso de
2ms. Outro aspecto importante que influencia os resultadoatéacéo do escalonador
do sistema operacional. Quando o processo é escalonaderdks g dominio sobre a
CPU e pode ficar certo periodo de tempo bloqueado, no casmda,leésse tempo é de
no minimo 10ms. Por esse motivo podem existir alguns piceang@itude média de
10ms em alguns graficos do tempo de espera, como na Figura 5.1.

A partir da andlise dos dados acima e do estudo dos graficengmtde resposta
percebemos que as melhores respostas do sistema foram dempmss de polling de
1ms, 6ms e 10ms. O principal parametro dessa avaliagédo élacédscdo tempo de
resposta, ou seja, o melhor tempo de resposta é aquele gaearoadt da execu¢do menos
se afastou do valor médio. Para ilustrar alguns desses tedgpesposta as figuras 5.2,
5.3 e 5.4 mostram o comportamento do sistema para cada urmpErEneentos descritos
acima, utilizando o tempo de polling de 1ms.

Assim, ao se analisar o comportamento da arquitetura devaegsoftware proposta
nesse trabalho chega-se a algumas conclusdes interes#apteneira € que a utilizagéo
da USB comdackbonede comunicagéao entre um computador e um conjunto de micro-
controladores permite a constru¢do de um sistema de coagd@i@xtremamente rapido
e seguro. Um segundo ponto é que gracas as funcionalidagpesihilizadas pela USB é
possivel construir praticamente qualquer sistema robbétm arquitetura mestre-escravo
utilizando o modelo proposto nesse trabalho.

29

Tempo Resposta USB Polling 8 ms
40 T T T T

35- B

Tempo de Resposta (ms)
N w
w o

T T

L L

IN)
=]
T

I

10 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Amostras

Figura 5.1: Tempo de resposta USB com polling de 8ms.

Um outro resultado interessante foi a possibilidade de disarsas interfaces HID
diferentes no mesmo microcontrolador. Como destacado ebes@nteriores, o sistema
operacional associa um driver a cada interface e ndo a cgjulasttivo. Assim, utilizando
varias interfaces € possivel associar cada sensor cooetachicrocontrolador a uma
interface especifica. Desse modo, a nivel de sistema opeahcho lugar de um Unico
dispositivo (o microcontrolador), o sistema visualiza ti@spositivos” (interfaces) dife-
rentes: os motores, a bussola e o sonar.

A utilizacdo do modelo de interfaces possibilita, ao progador de alto-nivel, um
modelo extremamente flexivel de acesso aos recursos doRobéxemplo, o programa-
dor poderia definir uma classe especifica para acessar eisilaricada um dos sensores,
tudo isso abstraindo a presencga do microcontrolador. Urs@rehcao interessante é que
a utilizacao de interfaces nao diminui a taxa de transmide&stema, como cada uma
dessas interfaces utiliza apenas endpoints Interruptitecdadora USB reserva banda su-
ficiente para cada um desses endpoints. Vale lembrar quaioadasses endpoints tem
taxa de transmisséo de 64 Kbits/s, enquanto o host podendlidpar até 480 Mbits/s.
Portanto, € possivel utilizar um nimero razoavel de integfalimitado apenas pelo ta-
manho do campo de enderegcamento, que suporta 128 endeifegestes.

Por fim, o resultado mais animador do trabalho foi a posdiuilée de mesmo traba-
Ihando com um SO Linux convencional, poder atender a ceotadigdes de tempo real.
Como observado nos experimentos a arquitetura tem a taad@émsempre responder
num tempo médio aceitavel e com um desvio padrdo pequenordBdeque gracas a
atuacao do escalador ou da carga de processos presentg@emasem alguns momentos
o tempo de resposta serda maior do que o esperado. No enwm@t@psicacao projetada
para utilizar essa arquitetura tiver meios de se recuperatrdsos esporadicos oriundos
do SO, a arquitetura proposta nesse trabalho podera seegsaar.

30 CAPITULO 5. RESULTADOS E CONCLUSOES

3.2

Tempo Resposta USB Polling 1 ms
T T T T T

N N N
£ (2] fe-]
| i i
L L L

Tempo de Resposta (ms)

N
N
T
I

| ST e B
A # ot o W il 4 iy .

1.8 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Amostras

Figura 5.2: Tempo de resposta USB com polling de 1ms.

Vale salientar que no projeto AEROPETRO, onde essa argrateera primeiramente
empregada, as restricbes de tempo real ndo sao rigidasiferiporque a utilizacéo de
um sistema operacional de tempo real seria impraticavédldévnecessidade de proces-
sar imagens. Segundo, porgue o controle que sera embargaikteama tem um tempo
de resposta compativel com os resultados da arquiteturatu@dores que serdo empre-
gados no robd possuem um tempo de resposta de 20ms, podapéoior aos tempos
de resposta médios obtidos nos testes. Desse modo, a anguite hardware e software
desenvolvida nesse trabalho é perfeitamente adaptaeelpbzacdo em veiculos aéreos
nao-tripulados.

Figura 5.3: Tempo de resposta da Bussola com polling de 1ms.

Tempo de Resposta (ms)

Tempo de Resposta (ms)

3.2

N
@

N
[

INd
s

N
Y]

175

155

Tempo Resposta Bussola Polling 1 ms

O ‘LM"IW_JM I

100

200

300 400 500 600 700 800 900 1000
Amostras

Tempo Resposta Sonar Polling 1 ms

50

100

150 200 250 300 350 400 450 500
Amostras

Figura 5.4: Tempo de resposta Sonar com polling de 1ms.

31

32

CAPITULO 5. RESULTADOS E CONCLUSOES

Referéncias Bibliograficas

Forum, USB Implementers’ (2001)evice Class Definition for Human Interface Devices
(HID), USB Implementers’ Forum.

Jonathan Corbet, Alessandro Rubini & Greg Kroah-Hartm@0%2, Linux Device Dri-
vers, Third Edition O’Reilly Media.

Karim Yaghmour, Jon Masters, Gilad Ben-Yossef & Philippeuse (2008),Building
Embedded Linux Systems, Second Edit@Reilly Media.

Microchip (2007),PIC 18F2455/2550/4455/4550 Data Shedicrochip Technologies.

usb.org (2000)Universal Serial Bus Specification Revision,218b.org.

33

34

REFERENCIAS BIBLIOGRAFICAS

Apéndice A

Modelo de Mensagens

Para que o computador e o microcontrolador possam comesgctiequadamente é pre-
ciso estabelecer um protocolo entre eles. Com esse objetiecaado um pequeno pro-
tocolo de comunicacao baseado em troca de mensagens paravarkr de testes. As
mensagens a seguir sao divididas em quatro grupos basicos:

Mensagens de Motores
Mensagens da Bussola
Mensagens do Sonar

Mensagens de Modo de Operacéo

HownN e

Para facilitar a compreenséo das mensagens abaixo € imgoctanpreender alguns
detalhes da notac&o. Primeiro, cada bloco destacado ndowegessenta um byte indi-
vidual. E todas as mensagens seguem o modelo abaixo:

| TIPO | OPCOES| PAYLOAD |

A.1 Motores
SET_MOTORES: Cada motor € acionado por um valor entre 0-1000.
[MOTORES[SET_MOTORES| MT1_H[MTL L[..[MT4_ H|MT4_L

GET_MOTORES: Requisi¢ao
MOTORES\ GET_MOTORES\

GET_MOTORES: Retorna um valor entre 0-1000 para cada motor
[MOTORES| GET_MOTORES| MT1_H[MTL_L|..[MT4_H [MT4_L

A.2 BuUssola

REQ_BUSSOLA: Requisicao da Bussola
| BUSSOLA | REQ_BUSSOLA|

36 APENDICE A. MODELO DE MENSAGENS

REPLY_BUSSOLA: Resposta da requisicdo
\ BUSSOLA\ REPLY_BUSSOLA\ BUSSOLA_H\ BUSSOLA_L\

e Retorna o valor em graus 0.00 até 360.00.
e O valor estd armazenado em dois inteiros.

STATUS_BUSSOLA: Requisi¢cao
| BUSSOLA| STATUS_BUSSOLA|

STATUS BUSSOLA: Resposta
\ BUSSOLA\ STATUS_BUSSOLA\ MODO_DE_OPERA(;AO\ POLLING \

e MODO_DE_OPERACAO: 0 (Requisicdo) e 1 (Automatico)

e POLLING: se estiver em automatico, determina de quanto eantquempo
envia dados.

e Caso deseje mudar do modo automatico para o manual bastr enva
REQ_BUSSOLA.

ERROR_BUSSOLA: Inidica que ocorreu um erro no bussola
[BUSSOLA| ERROR_BUSSOLA

A.3 Sonar

REQ_SOANR: Requisi¢ao de Sonar
\ SONAR\ REQ_SONAR\

REPLY_SONAR: Resposta da requisicéo
[SONAR| REPLY_SONAR]| SONAR_H| SONAR_L |

e Retorna a distancia em cm.
e O valor estd armazenado em dois inteiros.

STATUS_SONAR: Requisi¢cédo
| SONAR | STATUS_SONAR]

STATUS_SONAR: Resposta
\ SONAR\ STATUS_SONAR\ MODO_DE_OPERA(;AO\ POLLING \

e MODO_DE_OPERACAQ: 0 (Requisicéo) e 1 (Automatico)

e POLLING: se estiver em automatico, determina de quanto eantquempo
envia dados.

e Caso deseje mudar do modo automético para o manual bastr enva
REQ_SONAR.

ERROR_SONAR: Inidica que ocorreu um erro no sonar

A.4. MODO AUTOMATICO 37

[SONAR| ERROR_SONAR|

A.4 Modo Automatico

Nesse modo o sensor recebe uma requisicao avisando queelender os dados conti-
nuamente ao mestre. Esses dados séo enviados a uma taxpéniéieeaia na requisigéo.

POLLING: Configura o modo automatico, e define a taxa de envio dos dados.
[AUTO | POLLING [MS_H| MS_L |

e O intervalo de envio é definido em milissegundos.
e O valor maximo de 1.000, ou seja, 1 segundo.

SENSOR: Define que sensor entrara em modo de envio automatico
| AUTO | SENSOR] TIPO |

e O TIPO pode ser SONAR ou BUSSOLA.

Cada uma das TAGs descritas nas mensagens acima estacedafinidrquivanes-
sageflags.hdisponibilizado no pacote da biblioteca USBRobot.

