

Monografia de Graduação

Modelagem Termodinâmica do Sistema Aquoso Com Etanol Visando a Otimização da Destilação

Júlia Gabriela Araújo Arruda Faustino

Natal, abril de 2021

UFRN/CT/NUPEG - Campus Universitário - 59078-970 - Natal - RN – BRASIL – <u>www.nupeg.ufrn.br</u>

JÚLIA GABRIELA ARAÚJO ARRUDA FAUSTINO

MODELAGEM TERMODINÂMICA DO SISTEMA AQUOSO COM ETANOL VISANDO A OTIMIZAÇÃO DA DESTILAÇÃO

Trabalho de conclusão de curso apresentado ao curso de graduação em Engenharia Química, da Universidade Federal do Rio Grande do Norte, como requisito parcial à obtenção do título de Bacharel em Engenharia Química.

Orientador: Prof. Dr. Osvaldo Chiavone Filho. Coorientadora: Ma. Maitê Medeiros de Santana e Silva.

NATAL Abril de 2021

JÚLIA GABRIELA ARAÚJO ARRUDA FAUSTINO

MODELAGEM TERMODINÂMICA DO SISTEMA AQUOSO COM ETANOL VISANDO A OTIMIZAÇÃO DA DESTILAÇÃO

Trabalho de conclusão de curso apresentado ao curso de graduação em Engenharia Química, da Universidade Federal do Rio Grande do Norte, como requisito parcial à obtenção do título de Bacharel em Engenharia Química.

Aprovado em: <u>16 de abril de 2021</u>

BANCA EXAMINADORA

Chigone Rela-

Prof. Dr. Osvaldo Chiavone Filho Orientador UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

Maiti medeiros de Santana e Silia

Ma. Maitê Medeiros de Santana e Silva

Coorientadora UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

Duana Rabelo Hollande

Ma. Luana Rabelo Hollanda Membro interno UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

AGRADECIMENTOS

À Deus, pelo seu imenso amor e cuidado, por me proporcionar o conhecimento necessário para alcançar meus objetivos.

À minha família, por todo apoio, amor e incentivo, em especial aos meus pais Alcilene e Fernando. Ao meu esposo Juniano e ao meu filho Josias por serem minha motivação diária para alcançar meus objetivos.

Ao meu orientador professor Dr. Osvaldo Chiavone Filho, por sempre estar disposto a me ensinar, orientar, incentivar e ajudar ao longo de toda a graduação. E pela oportunidade de realizar pesquisa como aluna de iniciação científica no Núcleo de Ensino e Pesquisa em Petróleo e Gás (NUPEG), que foi de grande importância para o meu crescimento profissional.

A Maitê e Luana por toda atenção, pela paciência e ajuda disponibilizada.

Aos meus professores e a todos que contribuíram para minha formação.

À CAPES e ao CNPQ, pelo apoio financeiro durante a graduação.

Ao NUPEG, pela estrutura física disponibilizada para esse trabalho.

À Agência Nacional de Petróleo, Gás Natural e Biocombustíveis, em especial ao PRH-44, pela contribuição e incentivo no desenvolvimento de estudos na área de petróleo e biocombustíveis.

Um pouco de ciência nos afasta de Deus. Muito, nos aproxima.

Louis Pasteur

RESUMO

Dados de equilíbrio líquido-vapor (ELV) são importantes para o desenvolvimento de modelos a serem empregados nas etapas de projeto e otimização de unidades de destilação. O trabalho desenvolvido consiste na pesquisa e análise sistemática de dados experimentais da literatura de pressão de vapor da água e do etanol e medidas de equilíbrio líquido vapor da mistura binária. Constantes de Antoine para pressão de vapor foram estimadas com precisão. Um banco de dados experimentais de ELV aprovado no teste de consistência, foi utilizado na reparametrização dos parâmetros de interação binária "a_{ij}" do modelo UNIQUAC. Com os parâmetros obtidos, foi possível realizar simulações do comportamento do sistema etanol-água a 1 atm e 10 atm, obtendo um azeótropo a 87,7% molar (94,8% em massa) e 82,2% molar (92,2% em massa), respectivamente. Essas pressões são as usualmente aplicadas no processo de destilação por oscilação de pressão, que é utilizado devido ao comportamento azeotrópico do sistema etanol-água, para obter etanol anidro. Foram gerados diagramas Txy do processo de separação e uma destilação *flash* foi também simulada. Na destilação *flash*, foi possível observar a obtenção de um etanol mais concentrado na saída do separador, demonstrando que o modelo se aplica de forma adequada ao processo.

Palavras-chave: Equilíbrio Líquido-Vapor. Etanol anidro. Etanol hidratado. Destilação por oscilação de pressão. UNIQUAC.

ABSTRACT

Vapor-liquid equilibrium (VLE) data is important for the development of models to be used in the design and optimization distillation columns. This work provides a systematic research and analysis of experimental literature data starting from vapor pressure of water and ethanol to vapor-liquid equilibrium measurements of the binary mixture. Antoine constants for the vapor pressure were accurately estimated. VLE experimental database approved in the consistency test were used for the reparameterization of the binary interactions "aij" of the UNIQUAC model. With the obtained parameters it was possible to carry out simulations of the behavior of the ethanol-water system at 1 atm and 10 atm, obtaining azeotrope points of 87.7% molar (94.8wt%) and 82.2% molar (92.2wt%), respectively. These pressures are usually applied in in the Pressure-Swing Distillation (PSD) process, which is used due to the azeotropic behavior of the ethanol-water system to get anhydrous ethanol. Temperature composition diagrams (Txy) in the pressure of the separation process were generated and *flash* distillations were also simulated. In *flash* distillation it was possible to observe the result of a more concentrated ethanol at the exit of the separator, demonstrating that the model applies properly to the PSD process.

Keywords: Vapor-Liquid Equilibrium. Anhydrous Ethanol. Hydrous ethanol. Pressure-swing distillation. UNIQUAC.

LISTA DE FIGURAS

Figura 1 – Matriz veicular nacional nos anos de 2018 e 201917
Figura 2 – Número de publicações por ano no mundo, pesquisa por "Destilação etanol" de
1932 a 2021 (Scopus)
Figura 3 – Número de publicações por país, pesquisa por "Destilação etanol" de 1932 a 2021
(Scopus)
Figura 4 – Número de publicações por ano no Brasil, pesquisa por "Destilação etanol" de
1980 a 2021 (Scopus)
Figura 5 – Esquema de destilação por oscilação de pressão21
Figura 6 – Diagrama ternário etanol-água-acetona com a representação do azeótropo de
etanol-água a 1, 5 e 10 atm23
Figura 7 – Fluxograma dos métodos para estimação dos parâmetros do modelo UNIQUAC. 33
Figura 8 – Esquema de separação <i>flash</i>
Figura 9 – Diagrama Txy etanol e água com azeótropo a 1 atm em x=0,877 e 78,027 °C, com
zoom na região de formação do azeótropo41
Figura 10 – Diagrama Txy etanol e água com azeótropo a 10 atm em x=0,822 e 150,946°C,
com zoom na região de formação do azeótropo42
Figura 11 – Diagrama yx etanol e água com representação do azeótropo a 1 e 10 atm 43
Figura 12 – Diagrama yx etanol e água a 1 atm e 10 atm com região de operação do processo.
Figura 13 – Destilação <i>flash</i> etanol e água a 151°C 1 e 10 atm com entrada de 87,7% de etanol
e 12,3% de água realizada no Specs v.5.6344

LISTA DE TABELAS

Tabela 1 – Temperatura de ebulição e desvios calculados com ANTOINEA para as espécie	\$S
analisadas	. 35
Tabela 2 – Temperatura de ebulição e desvios calculados com ANTOINER para as espécie	es
analisadas	. 35
Tabela 3 – Constantes de Antoine para teste de consistência e estimação de parâmetros	
UNIQUAC (pressão em mmHg e temperatura em °C)	. 36
Tabela 4 – Avaliação da consistência dos sistemas isobáricos para o sistema etanol-água	
utilizando o software Consist.	. 37
Tabela 5 – Avaliação da consistência dos sistemas isotérmicos para o sistema etanol-água	
utilizando o software Consist.	. 38
Tabela 6 – Parâmetros UNIQUAC com dependência de dois coeficientes	. 39
Tabela 7 – Desvios dos parâmetros UNIQUAC	. 40
Tabela 8 – Teste de consistência dos dados de Al-rub, Banat e Jumah (1999)	. 64
Tabela 9 – Teste de consistência dos dados de Alvarez et al. (2011)	. 65
Tabela 10 – Teste de consistência dos dados de Arce, Martínez-Ageitos e Soto (1996)	. 66
Tabela 11 – Teste de consistência dos dados de Beebe et al. (1942) a 95mmHg	. 67
Tabela 12 – Teste de consistência dos dados de Beebe et al. (1942) a 190mmHg	. 68
Tabela 13 – Teste de consistência dos dados de Beebe et al. (1942) a 380mmHg	. 69
Tabela 14 – Teste de consistência dos dados de Beebe et al. (1942) a 760mmHg	. 69
Tabela 15 – Teste de consistência dos dados de Dalager (1969)	. 70
Tabela 16 – Teste de consistência dos dados de Dias et al. (2017)	.71
Tabela 17 – Teste de consistência dos dados de Iwakabe e Kosuge (2001)	.72
Tabela 18 – Teste de consistência dos dados de Jones, Schoenborn e Colburn (1943)	.73
Tabela 19 – Teste de consistência dos dados de Kamihama et al. (2012)	. 74
Tabela 20 – Teste de consistência dos dados de Kojima, Ochi e Nakazawa (1968)	. 75
Tabela 21 – Teste de consistência dos dados de Kojima <i>et al.</i> (1968)	.76
Tabela 22 – Teste de consistência dos dados de Kurihara et al. (1993)	.77
Tabela 23 – Teste de consistência dos dados de Lai, Lin e Tu (2014)	. 78
Tabela 24 – Teste de consistência dos dados de Lei et al. (2002)	. 78
Tabela 25 – Teste de consistência dos dados de Maciel (2012)	. 79
Tabela 26 – Teste de consistência dos dados de Navarro-Espinosa, Cardona e López (2010)79
Tabela 27 – Teste de consistência dos dados de Paul (1976)	. 80

Tabela 28 – Teste de consistência dos dados de Rieder e Thompson (1949)81
Tabela 29 – Teste de consistência dos dados de Rius, Otero e Macarron (1959) a
708,19mmHg
Tabela 30 – Teste de consistência dos dados de Rius, Otero e Macarron (1959) a
708,60mmHg
Tabela 31 – Teste de consistência dos dados de Svoboda, Hynek e Pick (1968)
Tabela 32 – Teste de consistência dos dados de Yang e Wang (2002)
Tabela 33 – Teste de consistência dos dados de Zandijcke e Verhoeye (2007)
Tabela 34 – Teste de consistência dos dados de Barr-David e Dodge (1959) a 150°C
Tabela 35 – Teste de consistência dos dados de Barr-David e Dodge (1959) a 200°C
Tabela 36 – Teste de consistência dos dados de Connemann <i>et al.</i> (1990)
Tabela 37 – Teste de consistência dos dados de Griswold, Haney e Klein (1943) a 150°C 88
Tabela 38 – Teste de consistência dos dados de Griswold, Haney e Klein (1943) a 200°C 89
Tabela 39 – Teste de consistência dos dados de Herraiz, Shen e Coronas (1998)
Tabela 40 – Teste de consistência dos dados de Kurihara <i>et al.</i> (1995) a 50°C90
Tabela 41 – Teste de consistência dos dados de Kurihara <i>et al.</i> (1995) a 55°C91
Tabela 42 – Teste de consistência dos dados de Kurihara <i>et al.</i> (1995) a 60°C92
Tabela 43 – Teste de consistência dos dados de Mertl (1972) a 69,9°C
Tabela 44 – Teste de consistência dos dados de Mertl (1972) a 54,9°C
Tabela 45 – Teste de consistência dos dados de Mertl (1972) a 39,9°C
Tabela 46 – Teste de consistência dos dados de NIESEN et al. (1986) a 150°C94
Tabela 47 – Teste de consistência dos dados de NIESEN et al. (1986) a 200°C95
Tabela 48 – Teste de consistência dos dados de Pemberton e Mash (1978) a 30°C95
Tabela 49 – Teste de consistência dos dados de Pemberton e Mash (1978) a 50°C96
Tabela 50 – Teste de consistência dos dados de Pemberton e Mash (1978) a 70°C
Tabela 51 – Teste de consistência dos dados de Pemberton e Mash (1978) a 90°C
Tabela 52 – Teste de consistência dos dados de Phutela, Kooner e Fenby (1979)
Tabela 53 – Teste de consistência dos dados de Vu et al. (2006) 100
Tabela 54 – Teste de consistência dos dados de Yamamoto <i>et al.</i> (1995) 101
Tabela 55 – Teste de consistência dos dados de Zielkiewicz e Konitz (1991) 102

-

LISTA DE SIGLAS E ABREVIATURAS

COVID-19	Doença por Coronavírus 2019
DDB	Dortmund Data Bank
DESV	Desvio
DIPPR	Design Institute for Physical Properties
ELV	Equilíbrio líquido-vapor
EMBRAPA	Empresa Brasileira de Pesquisa Agropecuária
EST	Estimado
EXP	Experimental
NIST	National Institute of Standards and Technology
PSD	Destilação por oscilação de pressão
UNIFAC	UNIQUAC Functional-group Activity Coefficients
UNIQUAC	UNIversal QUAsi-Chemical Activity Coefficients

LISTA DE SÍMBOLOS

\mathbf{N}°	Número
G	Energia livre de Gibbs
Т	Temperatura
Р	Pressão
V	Volume
N e m	Número de componentes
$ar{G}$	Energia livre de Gibbs parcial molar
R	Constante universal dos gases ideais
f	Fugacidade
\hat{f}_i	Fugacidade do componente i na mistura
X	Composição molar na fase líquida
У	Composição molar na fase vapor
Z	Fator de compressibilidade
a	Atividade
\overline{V}	Volume parcial molar
h	Entalpia
a_{ij}	Parâmetro ajustável de interação UNIQUAC
u _{ij}	Parâmetro, ou potencial, de interação entre as espécies i e j
A, B e C	Constantes de Antoine
C_1, C_2, C_3	Constantes
r _i	Parâmetro de volume para o componente i
r _j	Parâmetro de volume para o componente j
q_i	Parâmetro de área para o componente i
q_j	Parâmetro de área para o componente j
σ	Erro experimental estimado para correlação de dados
γ	Coeficiente de atividade
∞	Diluição infinita
В	Segundo coeficiente virial
P ^{vap}	Pressão de vapor
С	Terceiro coeficiente virial

$B_{metaestável}$	Segundo coeficiente virial (contribuição metaestável)				
$B_{ligante}$	Segundo coeficiente virial (contribuição ligante)				
$B_{ m livre}$	Segundo coeficiente virial (contribuição livre)				
$B_{ m química}$	Segundo coeficiente virial (contribuição química)				
Φ_i	Fração volumétrica do componente i em termos de r_i				
φ	Coeficiente de fugacidade do componente <i>i</i> na mistura				
Θ_i	Fração de área superficial do componente i				
$ au_{\it ij}$, $ au_{\it ji}$	Parâmetros ajustáveis por binário i-j				
	Subscritos				
i, j,1e 2	Subscritos Componentes				
i, j,1e 2	Subscritos Componentes Sobrescritos				
i, j,1e 2 Sat	Subscritos Componentes Sobrescritos Saturação				
i, j,1e 2 Sat L	Subscritos Componentes Sobrescritos Saturação Estado líquido				
i, j,1e 2 Sat L o	SubscritosComponentesSobrescritosSaturaçãoEstado líquidoEstado padrão				
i, j,1e 2 Sat L o V	SubscritosComponentesSobrescritosSaturaçãoEstado líquidoEstado padrãoEstado vapor				
i, j,1e 2 Sat L o V E	SubscritosComponentesSobrescritosSaturaçãoEstado líquidoEstado padrãoEstado vaporExcesso				

1 INTRODUÇÃO	15
2 REVISÃO DE LITERATURA	17
2.1 DESTILAÇÃO DO ETANOL	17
2.2 EQUILÍBRIO DE FASES	
2.2.1 Potencial químico	
2.2.2 Fugacidade	
2.2.3 Equilíbrio líquido-vapor	
2.2.4 Volatilidade relativa	
2.2.5 Equação do Virial	
2.2.6 Modelo UNIQUAC	
3 MATERIAIS E MÉTODOS	
3.1 CORRELAÇÃO DE DADOS DE PRESSÃO DE VAPOR	
3.2 TESTE DE CONSISTÊNCIA	
3.3 ESTIMAÇÃO DE PARÂMETROS UNIQUAC	
3.4 TESTE DOS PARÂMETROS UNIQUAC E SIMULAÇÃO FLASH	
4 RESULTADOS	
4.1 CONSTANTES DE ANTOINE	
4.2 TESTE DE CONSISTÊNCIA	
4.3 PARÂMETROS DE INTERAÇÃO UNIQUAC	39
4.4 SIMULAÇÃO DO PROCESSO	40
5 CONSIDERAÇÕES FINAIS	45
REFERÊNCIAS	46
APÊNDICE A – DADOS APROVADOS DE P ^{VAP} DO ETANOL DE 19,622 A 134	4,188°C
53	
APÊNDICE B – DADOS APROVADOS DE P ^{VAP} DA ÁGUA DE 10,0 °C A 210,0	°C 56
APÊNDICE C – DADOS APROVADOS DE P ^{VAP} DO ETANOL DE 19,622 A 24	3,33 °C
58	
APÊNDICE D – DADOS APROVADOS DE P ^{VAP} DA ÁGUA DE 10,0 °C A 300,0)°C,.61
APÊNDICE E – TESTE DE CONSISTÊNCIA PARA DADOS ISOBÁRICOS	64
APÊNDICE F – TESTE DE CONSISTÊNCIA PARA DADOS ISOTÉRMICOS.	86
ANEXO A – PROPRIEDADES FÍSICO-QUÍMICAS DA ÁGUA	103
ANEXO B – PROPRIEDADES FÍSICO-QUIÍMICAS DO ETANOL	104

SUMÁRIO

1 INTRODUÇÃO

O etanol, também conhecido como álcool etílico, é amplamente utilizado, em diferentes concentrações, pela indústria petroquímica como matéria prima adicionada à gasolina, na indústria farmacêutica como solvente e conservante em suas preparações, na indústria de bebidas como principal ingrediente, como combustível para veículos e aeronaves, e como desinfetante de uso industrial e residencial. Com a pandemia de coronavírus (COVID-19), o etanol 70% (% mássica) se tornou indispensável para desinfectar superfícies, reduzindo a propagação do vírus.

O etanol combustível classifica-se em anidro e hidratado. O etanol hidratado combustível possui em sua composição entre 95,1% e 96% de graduação alcoólica (% volumétrica) ou entre 92,5 e 93,8% (% mássica), enquanto o etanol anidro possui no mínimo 99,6% de graduação alcoólica com massa mínima de 99,3% (NOVACANA, 2012).

O etanol anidro é adicionado à gasolina para reduzir a emissão de gases do efeito estufa e aumentar o tempo de vida útil do motor. A adição de etanol faz com que ocorra um aumento de octanagem e promove uma queima superior da gasolina, reduzindo assim a emissão de CO e de particulados (SILVA *et al.*, 2020).

Porém, o processo de obtenção do etanol anidro é bastante oneroso devido a formação de azeótropo. Uma mistura de etanol e água é formada após a remoção de impurezas e fermentação. Para remoção da água, a mistura deve passar por um processo de destilação, porém o sistema apresenta a formação de um azeótropo de mínimo em x=0,88 a 350,00 K (DIAS *et al.*, 2017), impedindo a completa desidratação por destilação simples para alcançar o teor determinado na legislação.

Para resolver esse problema, deve-se utilizar operações mais complexas, como destilação por oscilação de pressão, destilação na presença de sais iônicos, destilação azeotrópica heterogênea, destilação reativa, destilação azeotrópica extrativa, além de processos combinados com membranas (DOHERTY; KNAPP, 2004). O processo de concentração do etanol geralmente é composto por duas colunas de destilação, que são responsáveis pela maior parte da energia consumida no processo, pois os reboilers das colunas consomem cerca de 35% da energia de aquecimento total de uma destilaria (MATUGI *et al.*, 2018; DIAS *et al.*, 2011).

A destilação por oscilação de pressão utiliza duas colunas, uma a baixa pressão, outra a alta pressão, e será foco de estudo neste trabalho, pois reduz os impactos ambientais ao não utilizar um agente extrator, não gerando resíduos. Para modelar e simular de forma confiável

esse processo, são necessários dados consistentes de equilíbrio líquido-vapor (ELV) em uma ampla faixa de temperatura e pressão, que são de difícil acesso em bancos de dados gratuitos.

Por esse motivo, este trabalho visa à obtenção de um banco de dados confiável, composto por dados experimentais de pressão de vapor de etanol e água e de ELV etanol-água, para uma reparametrização dos parâmetros de interação do modelo UNIQUAC, utilizado para representar as não idealidades da fase líquida, com dados a amplas faixas de temperatura e pressão, tornando possível a simulação e otimização do processo de destilação por oscilação de pressão convencional e processos modificados.

2 REVISÃO DE LITERATURA

2.1 Destilação do etanol

As principais matérias-primas para a fabricação do etanol no mundo são a cana-deaçúcar, o milho, a aveia, o arroz, a cevada, o trigo e o sorgo, sendo que no Brasil a principal matéria-prima utilizada é a cana de açúcar (EMBRAPA, 2021).

Após o recebimento da cana-de-açúcar na unidade industrial, ela é lavada e moída para extração de açúcares, formando o suco e o bagaço. O suco tem suas impurezas removidas fisicamente, passa por um tratamento químico e por evaporadores para remover sólidos, que representam cerca de 15% em massa (DIAS *et al.*, 2011). Em seguida, passa pelo processo de fermentação e por fim passa pelo processo de destilação, onde ocorre a separação da água até o ponto azeótropo formando o etanol hidratado. O etanol hidratado passa então pela desidratação, onde é obtido o etanol anidro.

O consumo de etanol hidratado vem crescendo no Brasil, representando 14,3% da matriz veicular nacional, enquanto o etanol anidro representa 6,8%. O consumo total de etanol teve um crescimento de 0,9% de 2018 para 2019, conforme representado na Figura 1.

Documentos sobre destilação do etanol começaram a ser publicados em 1936. O tema vem em constante crescimento desde então, com aproximadamente 7.700 trabalhos desenvolvidos até o momento (SCOPUS, 2021), conforme apresentado na Figura 2. O Brasil é o terceiro país do mundo em número de publicações no tema (Figura 3). Isso se deve ao

Fonte: ANP (2020).

interesse em desenvolver um produto de melhor qualidade e de maneira mais eficiente, devido ao grande consumo do produto na forma de etanol hidratado combustível e do etanol anidro, que corresponde a 27% na gasolina comum e aditivada e 25% na gasolina premium (PETROBRAS, 2021).

Figura 2 – Número de publicações por ano no mundo, pesquisa por "Destilação etanol" de 1932 a 2021 (Scopus)

Fonte: Adaptado de Scopus (2021).

De acordo com a União da Indústria da Cana-de-Açúcar (2020), o consumo de etanol hidratado como combustível no Brasil foi de 22.544.050.095 litros em 2019 (UNICA, 2020). O grande consumo do produto na forma de álcool 70% líquido e em gel com o COVID-19 fez com que as indústrias se adaptassem para atender a grande demanda, necessitando de estudos para otimizar a produção ou para a implantação de novas plantas de produção.

Figura 3 – Número de publicações por país, pesquisa por "Destilação etanol" de 1932 a 2021 (Scopus)

Fonte: Adaptado de Scopus (2021).

As publicações acerca da produção de álcool no Brasil iniciaram a partir da década de 80 impulsionadas pela implementação do Programa Nacional do Álcool (PROÁLCOOL) criado em 1975 pelo governo brasileiro e pela grande elevação do preço do petróleo em decorrência da Guerra do Golfo Pérsico entre Irã e Iraque em 1979, conhecido como segundo choque do petróleo (CORTEZ *et al.*, 2016). Em 2003, se iniciou a fabricação de carros modelo FFV (*flexible-fuel vehicle*) no Brasil, que funcionam tanto com álcool quanto gasolina, fazendo com que o consumo do produto crescesse, impulsionando as pesquisas para tornar a produção mais eficiente, conforme observado na Figura 4.

Figura 4 – Número de publicações por ano no Brasil, pesquisa por "Destilação etanol" de 1980 a 2021 (Scopus)

Fonte: Adaptado de Scopus (2021).

Na destilação simples, a mistura etanol-água é parcialmente evaporada e a separação ocorre quando as fases vapor (y) e líquida (x) têm composições diferentes. O sistema etanol e água forma um azeótropo. No ponto azeótropo, $y_i = x_i$. Portanto, ao atingir esse ponto, nenhuma separação ocorre, impossibilitando a separação de sistemas azeotrópicos com destilação simples.

De acordo com, Doherty e Knapp (2004) as principais técnicas para a separação de sistemas azeotrópicos são:

• Destilação reativa: onde o agente de separação reage com um determinado componente da mistura.

• Destilação azeotrópica extrativa: onde um agente de separação líquido completamente miscível (conhecido como solvente ou agente extrativo) é adicionado para alterar as volatilidades relativas.

• Destilação azeotrópica heterogênea: onde um agente conhecido como arrastador, forma um ou mais azeótropos e causa imiscibilidade, formando diferentes fases.

• Destilação na presença de sais iônicos: cuja adição altera as volatilidades relativas dos componentes.

• Destilação por oscilação de pressão (PSD), do inglês *Pressure Swing-Distillation*: Em que alguns azeótropos podem ser contornados usando duas ou mais colunas operadas em pressões diferentes.

Além de sistemas de destilação híbrida, que incluem técnicas de separação por membrana, usadas em conjunto com a destilação. A destilação extrativa é uma das principais técnicas aplicadas industrialmente para a desidratação do etanol e utiliza solventes como: etilenoglicol, éter dietílico, tolueno e furfural (KUMAR; SINGH; PRASAD, 2010). Porém, a crescente utilização de biocombustíveis, o uso de agentes extratores não apresenta um comportamento sustentável, gerando resíduos. A técnica PSD ainda é pouco estudada para o sistema etanol-água possuindo apenas 8 trabalhos publicados (SCOPUS, 2021), porém apresenta um bom potencial de separação e reduz os impactos ambientais. O processo de destilação por oscilação de pressão está ilustrado na Figura 5.

Figura 5 – Esquema de destilação por oscilação de pressão

Fonte: Adaptado de Mulia-Soto e Flores-Tlacuahuac (2011).

De acordo com Wang *et al.* (2014) que estudaram a técnica PSD com o sistema Tetraidrofurano (THF)/Etanol, o processo de destilação com oscilação de pressão exibiu melhor desempenho do ponto de vista econômico em relação a destilação extrativa para o sistema THF/Etanol. E que o uso de destilação extrativa tem a desvantagem de introduzir um componente solvente no sistema, que existe no produto como uma impureza. Xin-Yang, Da-Jun e Zhi-Yong (2017) também estudaram o sistema THF e etanol e concluíram que a PSD poderia ser utilizada para a separação comercial da mistura.

Sagar e Rahman (2017) utilizaram o processo de destilação por oscilação de pressão com duas colunas para separação etanol-água, a primeira a 760 mmHg cuja saída foi 81% de etanol e a segunda a 95 mmHg, cuja saída foi de 98% molar de etanol.

Mulia-Soto e Flores-Tlacuahuac (2011) estudaram o processo PSD para etanol-água a 1 atm e 10 atm e concluíram que o azeótropo do sistema muda de 87,2% molar de etanol a 1 atm para 79,4% molar de etanol a 10 atm, utilizando dados gerados pelo simulador Aspen com o modelo termodinâmico de Wilson para a fase líquida e a Equação de Redlich-Kwong para a fase vapor. O trabalho obteve etanol a 98,9% molar a 151°C na saída da segunda coluna.

O trabalho de Knapp e Doherty (1992), estudou o sistema etanol-água-acetona representando os azeótropos de etanol-água com dados experimentais a 1, 5 e 10 atm. Obtendo, como resultado experimental x=0,84 a 10 atm, x=0,86 a 5 atm e x=0,91 a 1 atm. Conforme, representado na linha etanol-água do diagrama ternário da Figura 6.

Figura 6 – Diagrama ternário etanol-água-acetona com a representação do azeótropo de etanol-água a 1, 5 e 10 atm.

Fonte: Adaptado de Knapp e Doherty (1992)

É possível otimizar o processo (PSD) realizando uma integração de calor entre as colunas e reduzindo os custos. Battisti (2019) realizou uma otimização do sistema PSD com integração de calor para o sistema etanol-água com colunas a 1 atm e 10 atm, minimizando os custos de energia em 40,2% ao ano em comparação ao PSD não otimizado. O processo de destilação com oscilação de pressão otimizado com integração de calor entre as colunas também foi estudado por Kiran e Jana (2015) com colunas a 1 atm e 10 atm para o sistema etanol-água obtendo uma economia de energia de 82,88% ao ano e uma redução de 22,16% na taxa de custo anual. Assim, pode-se concluir que o processo de destilação por oscilação de pressão é viável para o sistema etanol-água.

2.2 Equilíbrio de fases

O mecanismo em que se baseia a destilação é o equilíbrio de fases, especificamente o ELV. Portanto, é importante conhecer os conceitos e equações que serão apresentados a seguir.

Segundo Smith, Van Ness, Abbott e Swihart (2018), o equilíbrio é uma condição em que nenhuma mudança ocorre nas propriedades macroscópicas de um sistema isolado com o tempo. No equilíbrio, todos os potenciais que podem causar mudança são exatamente equilibrados, de forma que nenhuma força motriz existe para qualquer mudança no sistema. Um sistema isolado que consiste nas fases de líquido e vapor em contato íntimo eventualmente atingem um estado final em que não existe nenhuma tendência para que a mudança ocorra dentro do sistema. A temperatura, pressão e as composições das fases atingem valores finais que, a partir daí, permanecem fixos. Além disso, é necessário que a energia de Gibbs (G) seja mínima.

$$(dG)_{T,P} = 0 \tag{1}$$

Para sistemas binários existem três tipos de equilíbrio de fases: ELV, equilíbrio líquidolíquido (ELL) e equilíbrio sólido-líquido (ESL).

2.2.1 Potencial químico

O potencial químico de um componente $i(\mu_i)$ é uma grandeza intensiva que em termos da energia de Gibbs (*G*) é definida como uma função das variáveis usualmente medidas: temperatura (*T*), pressão (*P*) e composição ou número de moles de cada componente (n_i), tratando-se, portanto, de uma propriedade parcial molar da energia livre de Gibbs (\overline{G}_i).

$$\mu_i \equiv \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_{j \neq i}} = \bar{G}_i$$
(2)

2.2.2 Fugacidade

A fugacidade (*f*) foi definida por Lewis, com o objetivo de expressar o potencial químico através de uma variável concreta, isto é, uma pseudo-pressão, que foi chamada de fugacidade (LEWIS; RANDALL, 1961). Trata-se, portanto, do equivalente físico do potencial químico. A relação entre potencial químico e fugacidade está representada na Equação 3.

$$\mu_i(T, P) = \mu_i^0(T, P) + RT \ln(\hat{f}_i / f_i^0)$$
(3)

Onde:

0 refere-se ao estado padrão ou de referência adotado.

 $\hat{f}_i e f_i^0$ representam a fugacidade do componente "*i*" na mistura e no estado padrão, respectivamente.

 $\mu_i^0 e f_i^0$ são valores arbitrários, quando se escolhe o valor de um, o outro é fixado.

2.2.3 Equilíbrio líquido-vapor

Por definição, cada componente i em uma mistura azeotrópica em equilíbrio, terá fugacidades de fase líquida e de vapor iguais entre si:

$$f_i^{\nu} = f_i^l \tag{4}$$

Onde:

 f_i^{ν} = fugacidade do componente i na fase de vapor;

 f_i^l = fugacidade do componente i na fase líquida;

Usando a abordagem γ - ϕ (gamma-phi), para o cálculo do equilíbrio líquido-vapor, a fugacidade do vapor pode ser representada da seguinte forma:

$$\hat{f}_i^{\nu} = \hat{\varphi}_i^{\nu} y_i P \tag{5}$$

Onde:

 $\hat{\varphi}_i^{\nu} = 0$ coeficiente de fugacidade da fase vapor do componente i;

 y_i = fração molar do componente i na fase vapor;

P = a pressão total do sistema;

A fugacidade da fase líquida pode ser representada como:

$$\widehat{f}_{i}^{l} = x_{i} \gamma_{i} f_{i}^{l} \tag{6}$$

 x_i = fração molar do componente i na fase líquida;

 γ_i = coeficiente de atividade do líquido;

 f_i^l está representado na Equação 7.

$$f_i^l = \varphi_i^{sat} P_i^{sat} exp\left(\frac{1}{RT} \int V_i^l dP\right)$$
(7)

Onde:

 φ_i^{sat} = o coeficiente de fugacidade do componente puro i na temperatura do sistema e pressão de vapor, calculado a partir da Equação de estado da fase vapor;

 P_i^{sat} = pressão de vapor líquido do componente i;

O termo $exp\left(\frac{1}{RT}\int V_i^l dP\right)$ é conhecido como correção de Poynting. Se a pressão for menor que aproximadamente 10 atm e se o componente não for associável, f_i^l pode ser considerado como P_i^{sat} , pois as correções de não-idealidade do vapor saturado (φ_i^{sat}) e da correção de Poynting podem ser desprezadas (Oliveira, 2003).

$$\hat{\varphi}_i^{\nu} y_i P = x_i \gamma_i^{\ L} P_i^{sat} \tag{8}$$

Para baixas pressões (inferiores a 1 bar), $\hat{\varphi}_i^v = 1$, resultando na lei de Raoul modificada (Equação 9).

$$y_i P = x_i \gamma_i^{\ L} P_i^{sat} \quad ou \quad f_i^{\nu} = f_i^l \tag{9}$$

Quando o sistema é considerado ideal, $\gamma_i^L = 1$ e a Equação (9) é simplificada:

$$y_i P \approx x_i P_i^{sat} \tag{10}$$

2.2.4 Volatilidade relativa

Quando uma mistura líquida é parcialmente evaporada, como ocorre na destilação simples, a separação pode ocorrer quando as fases vapor e líquida têm composições diferentes, sendo esta diferença de composição a força motriz responsável pela transferência de massa no

processo. Nesse processo, a fase vapor fica rica nos componentes mais voláteis. O grau de facilidade de separação, também conhecido como volatilidade relativa, pode ser definido como:

$$\alpha_{ij} = \frac{y_i x_j}{x_i y_j} = \frac{\gamma_i P_i^{sat}}{\gamma_j P_j^{sat}}$$
(11)

Quanto maior o valor de α_{ij} , mais fácil é separar os dois componentes em questão. As misturas que têm volatilidades relativas próximas a 1 serão difíceis de separar usando destilação simples (Brits, 2015). No ponto azeótropo, como $y_i = x_i$, a volatilidade relativa é igual a 1 para todos os componentes e nenhum enriquecimento ocorre.

2.2.5 Equação do Virial

As propriedades volumétricas de um componente na fase vapor podem ser representadas por uma Equação de estado. Em densidades baixas ou moderadas, uma Equação de estado bastante aplicada é a Equação do virial truncada após o segundo termo. A Equação de estado do virial exprime o fator de compressibilidade, z, como uma série de potências do inverso do volume molar (V):

$$z = \frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \dots$$
(12)

Onde B é o segundo coeficiente virial e C o terceiro coeficiente virial. Para componentes puros, os coeficientes viriais são apenas função da temperatura; para misturas, também dependem da composição. Segundo Oliveira (2003), uma vantagem da utilização desta Equação consiste no fato de que os coeficientes viriais são teoricamente determinados a partir dos potenciais de interação entre as moléculas. Uma segunda vantagem está no fato de que a aplicação da Equação em misturas não necessita do estabelecimento de regras de misturas empíricas, dado que os coeficientes dependem da composição de uma forma exata que pode ser obtida por métodos da Termodinâmica Estatística.

O segundo coeficiente virial depende da temperatura e da composição, mas é independente da pressão e da densidade. Para um sistema contendo N componentes, a dependência de B em relação à composição pode ser vista na Equação 13:

$$B = \sum_{i} y_{i} \sum_{j} y_{j} B_{ij}$$
(13)

Sendo $B_{ij} = B_{ji}$, e B_{ij} dependente somente da temperatura e dos componentes i e j.

O coeficiente de fugacidade do componente i na mistura pode ser obtido da seguinte relação termodinâmica:

$$\ln \hat{\varphi}_i = \frac{1}{RT} \int_0^P \left(\overline{V}_i - \frac{RT}{P} \right) dP \tag{14}$$

Onde $\overline{V_i}$ é o volume molar parcial.

A correlação proposta por Hayden e O'Connell (1975) permite estimar os coeficientes de virial para compostos polares, apolares e que formem associações na fase vapor. O segundo coeficiente virial é considerado a soma de diversas contribuições:

$$B = B_{livre} + B_{metaestávd} + B_{ligação} + B_{químico}$$
(15)

Onde:

Blivre está relacionado com a forma e tamanho das moléculas;

 $B_{metastável} + B_{ligação}$ resulta da energia potencial de pares de moléculas com ligações mais ou menos fortes;

B_{químico} é a contribuição resultante de associações.

2.2.6 Modelo UNIQUAC

O modelo UNIQUAC (quasi-químico universal), desenvolvido por Abrams e Prausnitz (1975), é baseado na teoria mecânica estatística e permite que diferenças de tamanho e energia entre os componentes em uma mistura resultem em composições locais. O modelo utiliza a função Gibbs molar em excesso (G^E). Uma propriedade de excesso é a diferença entre uma propriedade termodinâmica de uma mistura real a uma dada temperatura, pressão e composição e a mesma propriedade calculada para uma mistura ideal nas mesmas condições. G^E é definida como:

$$G^{E} = G - G^{ideal} \tag{16}$$

O modelo consiste em duas partes, uma parte combinatorial e uma parte residual:

$$G^{E} = G^{E}(combinatorial) + G^{E}(residual)$$
(17)

$$\frac{G^{E}(combinatorial)}{RT} = \sum_{i} x_{i} ln \frac{\Phi_{i}}{x_{i}} + \frac{z}{2} \sum_{i} x_{i} q_{i} ln \frac{\Theta_{i}}{\Phi_{i}}$$
(18)

$$\frac{G^{E}(residual)}{RT} = -\sum_{i} x_{i} q_{i} \ln(\sum_{i} \theta_{j} \tau_{ji})$$
(19)

$$\Phi_i \equiv \frac{n_i r_i}{\sum_j n_j r_j} = \frac{x_i r_i}{\sum_j x_j r_j}$$
(20)

$$\theta_i \equiv \frac{n_i q_i}{\sum_j n_j q_j} = \frac{x_i q_i}{\sum_j x_j q_j} \tag{21}$$

$$\tau_{ij} \equiv \exp(-\frac{u_{ij} - u_{jj}}{_{RT}}) \tag{22}$$

$$a_{ij} \equiv \frac{u_{ij} - u_{jj}}{R} \tag{23}$$

Onde:

Z = número de coordenação do retículo;

 r_i = parâmetro de volume para o componente *i*;

 q_i =parâmetro de área superficial para o componente *i*;

 u_{ij} = parâmetro binário de interação definido por: $u_{ij} = (z/2)U_{ij}$, onde U_{ij} é a energia potencial caracterizando a interação entre os componentes *i* e *j*.

 a_{ij} = parâmetro ajustável de interação UNIQUAC

 ϕ_i = fração volumétrica do componente *i* em termos de r_i , Equação (20);

 θ_i = fração de área superficial do componente i em termos de q_i , Equação (21);

 τ_{ji} = parâmetro de interação

Os coeficientes de atividade, γ_i, estão relacionados com a função de Gibbs molar em excesso ((PRAUSNITZ; LICHTENTHALER; AZEVÊDO, 1986), segundo a expressão:

$$G^{E} = \operatorname{RT} \sum_{i=1}^{N} x_{i} \ln \gamma_{i}$$
(24)

De acordo com a Equação do coeficiente de atividade para uma solução, tem-se:

$$\ln \gamma_{i} = \left[\frac{\partial (n \, G^{E}/RT)}{\partial n_{i}}\right]_{T,P,n_{i\neq j}}$$
(25)

$$\ln \gamma_{i} = \ln \gamma_{i} \text{ (combinatorial)} + \ln \gamma_{i} \text{ (residual)}$$
(26)

$$\ln \gamma_{i} \text{ (combinatorial)} = \ln \frac{\phi_{i}}{x_{i}} + 1 - \frac{\phi_{i}}{x_{i}} - \frac{z}{2} q_{i} \left(\ln \frac{\phi_{i}}{\theta_{i}} + 1 - \frac{\phi_{i}}{\theta_{i}} \right)$$
(27)

$$\ln \gamma_{i} \text{ (residual)} = q_{i} \left(1 - \ln \sum_{j} \theta_{j} \tau_{ji} - \sum_{j} \frac{\theta_{j} \tau_{ij}}{\sum_{k} \theta_{k} \tau_{kj}} \right)$$
(28)

Observa-se que resultados numéricos para $\ln \gamma_i$ são insensíveis à escolha do número de coordenação (*Z*). Uma escolha razoável para o número de coordenação é entre 6 e 12 para líquidos. Porém, os parâmetros ajustáveis $\tau_{ij} e \tau_{ji}$ dependem da escolha de *Z*. O valor utilizado é usualmente 10 (OLIVEIRA, 2003).

3 MATERIAIS E MÉTODOS

3.1 Correlação de dados de pressão de vapor

Realizou-se uma ampla busca na literatura de dados experimentais de pressão de vapor do etanol e da água e dados de ELV etanol-água. Foram analisados 29 conjuntos de dados de pressão de vapor (18 de etanol e 11 de água) e 48 conjuntos de dados ELV.

Para correlacionar os dados de pressão de vapor e temperatura dos componentes estudados, foi utilizado o programa ANTOINE. ANTOINE é um software criado pelo químico Poul Munk Andersen em 1983, na Universidade Técnica da Dinamarca, que minimiza a soma de desvios quadrados de funções M em N variáveis usando um algoritmo de Levenberg-Marquardt de diferenças finitas. A partir de pressões de vapor medidas a diferentes temperaturas, o programa estima os parâmetros constantes A, B e C da Equação de Antoine para cada substância (Equação 28).

$$\log_{10} \mathbf{P} = \mathbf{A} - \frac{\mathbf{B}}{\mathbf{T} + \mathbf{C}} \tag{29}$$

Onde: P é a pressão de vapor da substância em milímetros de mercúrio (mmHg); T é a temperatura do sistema em graus Celsius (°C).

O programa ANTOINE tem duas versões, o ANTOINEA, que minimiza a soma dos desvios absolutos, e o ANTOINER que minimiza a soma dos desvios relativos. O primeiro consegue uma melhor precisão para correlacionar os parâmetros da Equação em faixas reduzidas de temperatura, enquanto o segundo correlaciona de forma mais satisfatória as faixas amplas.

Os trabalhos usados para coleta dos dados foram analisados de forma individual e depois agrupados, de modo que formassem um único conjunto por substância. Para as constantes obtidas com o programa ANTOINEA, os critérios de escolha dos dados foram: (a) desvio absoluto médio em pressão menor que 1 mmHg quando avaliados individualmente; (b) módulo do desvio relativo entre as pressões experimentais e as calculadas com as constantes obtidas menor ou igual a 2,0% quando analisados em conjunto; (c) temperatura de ebulição normal do conjunto calculada pelo programa ANTOINEA, de acordo com a literatura.

Para as constantes obtidas com o programa ANTOINER, os critérios de escolha dos dados foram: (a) desvio relativo médio da pressão do conjunto de dados menor que 0,5%; (b) temperatura de ebulição normal do conjunto calculada pelo programa ANTOINER, de acordo com a literatura.

3.2 Teste de consistência

Para criação de um banco de dados de ELV etanol-água que tenha qualidade assegurada para realizar correlações, predições e modelagem de processos, foi utilizado o teste de consistência dos desvios aplicado com o programa Consist. Os critérios do teste de consistência dos desvios são: desvio relativo em pressão deve ser menor que 0,005 (0,5%) para que os dados sejam aplicáveis para projetos e correlação e o desvio absoluto médio em y deve ser menor que 0,01 para dados consistentes (FREDENSLUND *et al.*, 1977, seção 5.2). Para dados com temperaturas a partir de 150°C foram aceitos desvios relativos em pressão de até 1% desde que obedecessem ao critério de desvio absoluto em y.

O programa Consist foi criado na Universidade Técnica da Dinamarca e testa os dados de ELV avaliando sua consistência termodinâmica conforme explicado na seção 5.2 do livro *Vapor-liquid equilibria using* UNIFAC (FREDENSLUND *et al.*, 1977). O programa estima pressão e fração molar da fase vapor (y), calcula os coeficientes de atividade de cada componente, energia livre de Gibbs de excesso, fugacidades dos componentes puros, coeficientes de fugacidade da mistura, graus de liberdade (GL) do sistema e coeficientes do polinômio Legendre utilizado pelo programa para o cálculo da pressão de vapor. As constantes termodinâmicas necessárias para o programa realizar os cálculos foram obtidas do *Design Institute for Physical Properties* (DIPPR) e se encontram nos anexos A e B. Os parâmetros r e q foram retirados de Abrams e Prausnitz (1975).

O desvio médio relativo em pressão (DESV médio P) foi calculado com a seguinte Equação:

DESV médio P (%) =
$$\frac{\sum \left|\frac{P \text{ estimada } -P \text{ experimental}}{P \text{ experimental}} \times 100\right|}{número \text{ de pontos}}$$
(30)

O desvio médio absoluto em y (DESV médio Y) corresponde a:

DESV médio Y =
$$\frac{\sum |y \text{ estimado } - y \text{ experimental}|}{\text{número de pontos}}$$
 (31)

3.3 Estimação de parâmetros UNIQUAC

Após a separação dos dados consistentes, foram utilizados dois métodos para a estimação de quatro parâmetros a_{ij} do modelo UNIQUAC com dois coeficientes no programa PARMOD, que tem como entrada as variáveis x, T, y e P. Os métodos estão sintetizados na Figura 7.

O método 1 utiliza todos os dados experimentais consistentes para estimar os parâmetros com uma função objetivo que minimiza os erros apenas nas variáveis dependentes y e T, enquanto x e P são fixadas. Em seguida, são removidos os dados que apresentarem desvios superiores a 2% em pressão e 0,02 em composição na fase vapor (y) e uma nova estimação de parâmetros é realizada. Devido a uma limitação do programa ao número de pontos inseridos, não é possível estimar os parâmetros minimizando os erros nas quatro variáveis com todos os dados.

O método 2 consiste em uma seleção entre os dados aprovados no método 1 de dados que englobem a mesma faixa de temperatura e pressão que o conjunto total de dados. Assim, é realizada a estimação dos parâmetros com a função objetivo nas quatro variáveis. Em seguida, os parâmetros são aplicados no restante dos dados para analisar se o modelo se aplica ao conjunto a partir da avaliação dos desvios.

Fonte: Elaborado pelo autor (2021).

3.4 Teste dos parâmetros UNIQUAC e simulação flash

Após a estimação dos parâmetros UNIQUAC, as constantes escolhidas foram inseridas no simulador Specs versão 5.63 para a geração de diagramas Txy a 1 atm e 10 atm. Essas pressões foram escolhidas por serem usualmente utilizadas para representar o processo de destilação por oscilação de pressão (MULIA-SOTO; FLORES-TLACUAHUAC, 2011; KIRAN; JANA, 2015; BATTISTI, 2019). Em seguida, foi realizada uma destilação *flash* com alimentação da coluna a 10 atm com a mesma concentração de saída da coluna se o processo de destilação fosse realizado a 1 atm (ponto azeótropo a 1 atm), com o objetivo de testar se o modelo pode ser aplicado ao processo. Um esquema da separação *flash* está ilustrado na Figura 8.

Na destilação *flash*, a alimentação é aquecida por um permutador de calor e ocorre uma despressurização rápida, causando uma separação entre o líquido e o vapor, obtendo o produto de interesse de forma mais concentrada.

Fonte: Elaborado pelo autor (2021).

4 RESULTADOS

4.1 Constantes de Antoine

Dos trabalhos analisados com o programa ANTOINEA, 13 cumpriram os critérios de escolha e foram utilizados. Os resultados foram sintetizados nas Tabelas 1 e 2, os pontos experimentais aprovados se encontram de forma integral nos apêndices A e B.

Para as constantes obtidas com o programa ANTOINER, 17 trabalhos foram selecionados. Os resultados estão sintetizados na Tabelas 3 e 4, os pontos experimentais aprovados estão reportados de forma integral nos apêndices C e D.

Tabela 1 – Temperatura de ebulição e desvios calculados com ANTOINEA para as espécies analisadas.

Espécie	T de ebulição normal ^a (°C)	T de ebulição normal calculada (°C)	DESV absoluto médio (mmHg)	DESV médio P (%)	DESV padrão (mmHg)	N° de pontos	Fai T	xa de (°C)
Etanol	78,29	78,296	0,614	0,23	0,869	104	19,622	134,188
Água	100,00	99,999	0,273	0,08	0,506	72	10,00	210,00

Fonte: Elaborado pelo autor (2021).

^a Valores obtidos utilizando o DIPPR.

Tabela 2 – Temperatura de ebulição e desvios calculados com ANTOINER para as espécies analisadas.

Espécie	T de ebulição normal (°C) ¹	T de ebulição normal calculada (°C)	DESV médio P (%)	DESV padrão (mmHg)	N° de pontos	Fai T	xa de (°C)
Etanol (ampliado)	78,29	78,28	0,43	0,007	131	19,622	243,33
Água (ampliada)	100,00	100,00	0,23	0,005	108	10,00	300,00

Fonte: Elaborado pelo autor (2021).

¹ Valores obtidos do DIPPR

As constantes obtidas com o programa ANTOINEA podem ser aplicadas em uma faixa de temperatura menor do que as obtidas com o ANTOINER, conforme pode ser visto na Tabela 3. Desvios maiores foram obtidos utilizando o ANTOINER, pois não é possível correlacionar dados que apresentam uma faixa tão ampla de temperatura com desvios tão baixos e apenas três parâmetros. No entanto, os desvios obtidos ainda são considerados pequenos, o que permite a utilização das constantes de Antoine para uma faixa mais ampla de temperatura.

UNIQUAC (pressão em mr Espécie	nHg e temperatura em °C Faixa de	Constantes de Antoine					
	temperatura (°C)	Α	B	С			
Etanol	19,622 – 134,188	7,89873	1470,02945	214,66011			
Água	10,00 - 210,00	7,93745	1650,81298	226,46549			
Etanol (ampliado)	19,622 - 243,33	7,83648	1438,54249	211,99856			

10,00 - 300,00

1668,38297

228.13174

7,96532

Tabela 3 – Constantes de Antoine para teste de consistência e estimação de parâmetros UNIQUAC (pressão em mmHg e temperatura em °C).

Fonte: Elaborado pelo autor (2021).

Água (ampliada)

4.2 Teste de consistência

Dos dados experimentais disponíveis na literatura, 48 conjuntos de dados ELV etanolágua foram analisados, 34 foram aprovados, totalizando 677 pontos. Para a correlação dos dados, foram utilizadas as constantes de Antoine da Tabela 3. As constantes de menor faixa de temperatura foram utilizados nos dados isobáricos. Para os dados isotérmicos, foi necessário utilizar as constantes de faixa mais ampla de temperatura, para que fosse possível englobar todos os conjuntos de dados. Os resultados dos testes de consistência dos sistemas isobáricos estão sintetizados na Tabela 4, e dos sistemas isotérmicos na Tabela 5. Os resultados detalhados para cada conjunto de dados estão apresentados nos apêndices E e F.
Faixa de T(°C)	Pressão (mmHg)	Nº de pts.	DESV P (%)	DESV y	Resultado	Referência
78,220 - 99,990	760	10	0,277	0,0055	Aprovado	Al–rub, Banat e Jumah (1999)
78,296 - 99,999	760,00	38	0,509	0,0139	Reprovado	Alvarez et al. (2011)
78,410 - 100,00	759,96	23	0,308	0,0068	Aprovado	Arce, Martínez– Ageitos e Soto (1996)
33,61 - 50,53	95	27	4,927	0,0254	Reprovado	
46,91 -65,26	190	24	3,695	0,0229	Reprovado	Beebe <i>et al.</i> (1942)
61,72 - 81,66	380	22	1,937	0,0162	Reprovado	
78,30 - 100,00	760	5	0,436	0,0102	Reprovado	
78,296 - 99,999	760	25	0,357	0,0089	Aprovado	Dalager (1969)
76,79 - 98,35	704,02	24	0,647	0,0182	Reprovado	Dias et al. (2017)
78,289 – 99,992	759,8	30	0,325	0,0028	Aprovado	Iwakabe e Kosuge (2001)
78,320 - 100,00	760	13	0,288	0,0046	Aprovado	Jones, Schoenborn e Colburn (1943)
78,290 - 100,00	760,0	23	0,185	0,0046	Aprovado	Kamihama <i>et al.</i> (2012)
78,460 - 100,00	760	21	0,263	0,0052	Aprovado	Kojima, Ochi e Nakazawa (1968)
78,330 - 100,00	760	21	0,211	0,0033	Aprovado	Kojima <i>et al.</i> (1968)
78,289 - 99,992	759,81	20	0,238	0,0071	Aprovado	Kurihara <i>et al.</i> (1993)
78,300 - 100,00	759,8	16	0,233	0,0027	Aprovado	Lai, Lin e Tu (2014)
78,500–99,800	760,0	16	1,556	0,0092	Reprovado	Lei et al. (2002)
78,400 - 100,15	760,0	24	2,306	0,0086	Reprovado	Maciel (2012)
71,60 - 92,59	580	7	0,264	0,0188	Reprovado	Navarro–Espinosa, Cardona e López (2010)
78,296 - 99,999	760	13	0,335	0,0067	Aprovado	Paul (1976)
78,296 - 100,00	760	36	0,591	0,0061	Reprovado	Rieder e Thompson (1949)
76,542 - 98,031	708,19	14	0,422	0,0031	Aprovado	Rius, Otero e
78,296 - 99,999	760	14	0,312	0,0035	Aprovado	Macarron (1959)
77,791 – 99,441	745	14	0,906	0,0100	Reprovado	Svoboda, Hynek e Pick (1968)
78,289 – 99,992	759,8	22	0,4056	0,0109	Reprovado	Yang e Wang (2002)
78,30 - 100,00	760	14	0,326	0,007	Aprovado	Zandijcke e Verhoeye (2007)

Tabela 4 – Avaliação da consistência dos sistemas isobáricos para o sistema etanol-água utilizando o software Consist.

Т (°С)	Faixa de P (mmHg)	Nº de pts.	DESV P (%)	DESV y	Resultado	Referência
150,00	3574 - 7288	19	0,821	0,007	Aprovado	Barr–David e
200,00	11707 - 22124	19	0,695	0,005	Aprovado	Dodge (1959)
59,950	149.27 – 352.1	15	0,157	0,002	Aprovado	Connemann <i>et al.</i> (1990)
150,00	3574 - 7288	7	0,394	0,024	Reprovado	Griswold,
200,00	11707 –22124	7	0,396	0,011	Reprovado	Klein (1943)
40,000	55.34 - 134.3	11	0,164	0,001	Aprovado	Herraiz, Shen e Coronas (1998)
50,000	92.637 – 221.73	39	0,154	0,002	Aprovado	17 11
55,000	118.23 – 280.96	36	0,124	0,002	Aprovado	Kurihara <i>et</i> <i>al.</i> (1995)
60,000	149.61 – 352.93	38	0,192	0,005	Aprovado	
69,9	232.5 - 540.2	15	0,192	0,008	Aprovado	
54,9	117.38 –279.0	15	0,266	0,007	Aprovado	Mertl (1972)
39,9	54.90 -133.21	15	0,266	0,007	Aprovado	
150,00	3574 - 7288	10	0,188	0,005	Aprovado	NIESEN et
200,00	11707 - 22124	8	0,367	0,008	Aprovado	al. (1986)
30,000	31.77 - 77.993	23	0,401	0,003	Aprovado	
50,000	92.637 – 221.733	26	0,206	0,002	Aprovado	Pemberton e
70,000	233.988 – 543.550	26	0,160	0,001	Aprovado	Mash (1978)
90,000	526.024 – 1183.237	26	0,184	0,002	Aprovado	
24,990	23.664 – 58.397	14	0,241	0,002	Aprovado	Phutela, Kooner e Fenby (1979)
40,000	55.6 - 135.0	28	0,369	0,009	Aprovado	Vu <i>et al.</i> (2006)
25,000	23.7 - 58.4	12	0,427	0,007	Aprovado	Yamamoto <i>et al.</i> (1995)
40,000	55.344– 134.26	25	0,115	0,001	Aprovado	Zielkiewicz e Konitz (1991)

Tabela 5 – Avaliação da consistência dos sistemas isotérmicos para o sistema etanol-água utilizando o software Consist.

4.3 Parâmetros de interação UNIQUAC

Os parâmetros de interação a_{ij} do modelo UNIQUAC foram estimados pelo *software* Parmod com otimização de 2 e de 4 variáveis. Apenas as variáveis dependentes foram otimizadas para todo o conjunto de dados experimentais (677 pontos). Em seguida, foram retirados os pontos com desvios superiores a 2% em P e 0,02 em y. O conjunto final de dados apresentou 646 pontos experimentais. Os parâmetros foram novamente estimados com otimização em 2 variáveis para este conjunto de dados.

Para um conjunto de dados de 239 pontos experimentais, foi realizada a estimação dos parâmetros com otimização nas 4 variáveis. Este conjunto é composto pela seleção de 13 conjuntos de dados que apresentaram os menores desvios e englobam a mesma faixa de temperatura e pressão que o conjunto completo, excluindo-se os pontos em x=0 e x=1. As constantes estimadas estão dispostas na Tabela 6.

Parâmetros ²	a _{12,1} (K)	a _{21,1} (K)	a _{12,2} (K)	a _{21,2} (K)
Otimização em 2 variáveis (646 pontos)	103,1	-26,79	-1,483	1,777
Otimização em 4 variáveis (239 pontos)	126,0	-3,700	-1,921	2,470

Tabela 6 – Parâmetros UNIQUAC com dependência de dois coeficientes

Fonte: Elaborado pelo autor (2021).

Incertezas atribuídas na estimação: $\sigma_{xl,2} = 0,0005$; $\sigma_T = 0,10$ K; $\sigma_{yl,2} = 0,0005$ e $\sigma_P = 0,50$ mmHg. a_{ij} (K) = $a_{ij,1} + a_{ij,2}$ (T - 298,15)

Os desvios médios em x, T, y e P foram calculados pelo Parmod para os conjuntos de dados experimentais e estão reportados na Tabela 7. Foi também realizado um teste de predição com os parâmetros otimizados nas 4 variáveis, analisando-se os desvios apresentados quando os parâmetros obtidos são aplicados no restante do conjunto (381 pontos). Observa-se que os dois conjuntos de parâmetros possuem baixos desvios, de acordo com os critérios estabelecidos. O conjunto otimizado em duas variáveis apresenta um menor desvio em pressão quando comparado ao teste de predição realizado com as constantes otimizadas nas 4 variáveis.

² Os desvios das estimativas de parâmetros em y e P estão disponíveis na Tabela 7 para comparação.

Desvio médio	x	T (%)	У	P (%)
Otimização em 2 variáveis (646 pts.)			0.0059	0.79
Otimização em 4 variáveis (239 pts.)	0.002	0.07	0.0036	0.17
Teste de predição com 381 pontos			0.0058	0.93

Tabela 7 – Desvios dos parâmetros UNIQUAC

Incertezas atribuídas na estimação: $\sigma_{xI,2} = 0,0005$; $\sigma_T = 0,10$ K; $\sigma_{yI,2} = 0,0005$ e $\sigma_P = 0,50$ mmHg.

O desvio em y do conjunto de otimização em 2 variáveis e do teste de predição, que utilizou os parâmetros otimizados em 4 variáveis, foram similares. Portanto, serão escolhidas para simular o processo os parâmetros obtidos com a correlação de 2 variáveis (646 pontos).

4.4 Simulação do processo

Com os parâmetros obtidos na correlação de 646 pontos, foram realizadas simulações no programa Specs para demonstrar a aplicabilidade do modelo ao processo de separação etanol-água. Utilizando o modelo termodinâmico UNIQUAC para a fase líquida e a Equação de Virial para a fase vapor, com a correção de Poynting para as simulações a 10 atm.

Foram gerados dados Txy no Specs a partir do modelo escolhido para etanol-água a 1 atmosfera, demonstrando a formação de um azeótropo em x=0,877 a 78,027 °C, que está de acordo com o resultado apresentado por Dias *et al.* (2017), que obteve um azeótropo em x=0,88 a 77 °C. O resultado está ilustrado na Figura 9.

Figura 9 – Diagrama Txy etanol e água com azeótropo a 1 atm em x=0,877 e 78,027 °C, com zoom na região de formação do azeótropo.

Fonte: Elaborado pelo autor (2021).

Foram também gerados dados Txy para o sistema a 10 atmosferas, demonstrando a formação de um azeótropo em x=0,822 a 150,946 °C, que está de acordo com o resultado apresentado por Knapp e Doherty (1992) que obteve um azeótropo em x=0,84 a 10 atm. A Figura 10 apresenta o diagrama Txy do processo a 10 atm.

Figura 10 – Diagrama Txy etanol e água com azeótropo a 10 atm em x=0,822 e 150,946°C, com zoom na região de formação do azeótropo.

Fonte: Elaborado pelo autor (2021).

Os resultados obtidos demonstram que o etanol hidratado combustível poderia ser obtido no processo a 1 atm, que apresentou azeótropo em 94,8% em massa, concentração superior a necessária para a venda do produto (92,5 a 93,8%). Para 10 atm, a composição mássica do azeótropo é de 92,2%. O azeótropo do sistema é deslocado com o aumento da pressão, conforme observado na Figura 11.

Figura 11 – Diagrama yx etanol e água com representação do azeótropo a 1 e 10 atm.

Fonte: Elaborado pelo autor (2021).

A região de operação das colunas de destilação para o processo por oscilação de pressão está ilustrada na Figura 12. O etanol anidro poderá ser obtido na base da segunda coluna, cuja temperatura deve ser de no máximo 150,946 °C.

Figura 12 – Diagrama yx etanol e água a 1 atm e 10 atm com região de operação do processo.

Fonte: Elaborado pelo autor (2021).

O processo de separação a 10 atm e 151,03°C foi simulado através de uma destilação *flash*, onde o separador foi alimentado com 87,7% de etanol e 12,3% de água. A saída do separador apresentou a separação de duas fases e um produto de 88,3% molar de etanol na fase líquida, demonstrando que o processo pode ser executado para obter um produto mais concentrado e que o modelo é bem aplicável (Figura 13).

Figura 13 –Destilação *flash* etanol e água a 151°C 1 e 10 atm com entrada de 87,7% de etanol e 12,3% de água realizada no Specs v.5.63.

```
INPUT: T = 424.185 K; P = 10.0000
                               atm
_____
THE NUMBER OF PHASES IS: 2
MOLE FRACTIONS IN EACH PHASE ARE:
        0.883443 0.876986
Ethanol
H2o
                0.116557 0.123014
                                  PC
[atm]
COMPONENT NAME
                  Z NOTRY
                             TC
                                             RD
                                                       DM
                           [K]
                                            [A] [Debye]
Ethanol
                0.8770 1 514.0000 60.5670 2.2590 1.6900
H2o
                 0.1230 1 647.0960 217.7550 0.6150
                                                     1.8490
             _____
THERMODYNAMIC MODEL
  _____
VAPOR PHASE
EQUATION OF STATE:
                Hayden-O'Connel second virial coefficient (VIRIAL)
VAPOR PRESSURE FUNCTION:
                       Antoine
LIQUID PHASE
EXCESS GIBBS ENERGY MODEL: UNIQUAC with temperature dependency 2 coeff.
POYNTING CORRECTION:
                             Yes
```

5 CONSIDERAÇÕES FINAIS

Os parâmetros A, B e C de Antoine estimados, o banco de dados de ELV construído e os parâmetros de interação "a_{ij}" UNIQUAC calculados serão de grande valia para a predição das propriedades termodinâmicas e de equilíbrio de fases, suprindo uma necessidade no meio industrial, além de possibilitar uma otimização de processos por meios de simulações que poderão ser realizas a uma ampla faixa de temperatura e pressão.

Todas as constantes A, B e C estimadas apresentaram desvios relativos em pressão inferiores a 0,5%, com faixa de temperatura entre 19,622 e 243,33°C para aplicação no sistema etanol-água. O banco de dados de ELV possui desvios absolutos em y inferiores a 0,01 e desvios relativos em pressão inferiores a 1%, com uma faixa de temperatura de 24,99°C a 200,00°C. Os parâmetros a_{ij} escolhidos possuem desvios absolutos em y iguais a 0,0059 e desvios relativos em pressão iguais a 0.79%.

O comportamento azeotrópico do sistema etanol e água representa uma barreira para a produção de etanol de alta pureza, por isso o processo de destilação por oscilação de pressão é necessário. A concentração dos azeótropos encontrados a 1 atm e 10 atm estão de acordo a literatura para a mistura etanol e água com, respectivamente 87,7% molar de etanol a 78,027 °C e 82,2% molar de etanol a 150,946 °C mostrando que o modelo é aplicável ao processo avaliado. É possível realizar uma futura simulação do processo para a obtenção do etanol anidro e análise de custos.

REFERÊNCIAS

ABRAMS, Denis S.; PRAUSNITZ, John M. Statistical thermodynamics of liquid mixtures: a new expression for the excess gibbs energy of partly or completely miscible systems. **Aiche Journal**, [S.L.], v. 21, n. 1, p. 116-128, jan. 1975. Wiley. http://dx.doi.org/10.1002/aic.690210115

AHMED, Nouria Chiali-baba *et al.* Phase equilibrium properties of binary aqueous solutions containing ethanediamine, 1,2-diaminopropane, 1,3-diaminopropane, or 1,4-diaminobutane at several temperatures. **The Journal of Chemical Thermodynamics**, [s.l.], v. 43, n. 5, p.719-724, maio 2011. Elsevier BV.

AL-RUB, Fahmi A. Abu; BANAT, Fawzi A.; JUMAH, Rami. Vapor–Liquid Equilibrium of Ethanol–Water System in the Presence of Molecular Sieves. **Separation Science and Technology**, [s.l.], v. 34, n. 12, p.2355-2368, 16 ago. 1999. Informa UK Limited.

ÁLVAREZ, V.H. *et al.* Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa. **Physics and Chemistry of Liquids**, [s.l.], v. 49, n. 1, p.52-71, jan. 2011. Informa UK Limited.

ANP. Seminário Anual de Avaliação do Mercado de Combustíveis 2020 (Ano-base 2019). Rio de Janeiro, 2020. 31 slides, color. Disponível em: http://www.anp.gov.br/arquivos/palestras/seminario-mercado-combustiveis-2020/sdl.pdf. Acesso em: 10 abr. 2021.

AMBROSE, D.; SPRAKE, C.H.S. Vapour Pressure of Alcohols. J. Chem. Thermo., 2, 631 (1970).

ARCE, Alberto; MARTÍNEZ-AGEITOS, José; SOTO, Ana. VLE for water + ethanol + 1octanol mixtures. Experimental measurements and correlations. **Fluid Phase Equilibria**, [s.l.], v. 122, n. 1-2, p.117-129, jul. 1996. Elsevier BV.

BARR-DAVID, Frank; DODGE, B. F. Vapor-Liquid Equilibrium at High Pressures. The Systems Ethanol-Water and 2-Propanol-Water. **Journal of Chemical & Engineering Data**, [s.l.], v. 4, n. 2, p.107-121, abr. 1959. American Chemical Society (ACS).

BATTISTI, Rodrigo; CLAUMANN, Carlos A.; MARANGONI, Cintia; MACHADO, Ricardo A. F. OPTIMIZATION OF PRESSURE-SWING DISTILLATION FOR ANHYDROUS ETHANOL PURIFICATION BY THE SIMULATED ANNEALING ALGORITHM. **Brazilian Journal of Chemical Engineering**, [S.L.], v. 36, n. 1, p. 453-469, mar. 2019. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/0104-6632.20190361s20180133.

BEATTIE, James A.; BLAISDELL, B. Edwin. An Experimental Study of the Absolute Temperature Scale. III. The Reproducibility of the Steam Point. The Effect of Pressure on the Steam Point. **Proceedings of the American Academy of Arts and Sciences**, [s.l.], v. 71, n. 6/8, p.361-374, 1937. JSTOR. BEEBE, A. H. *et al.* Equilibria in Ethanol-Water System at Pressures Less Than Atmospheric. **Industrial & Engineering Chemistry**, [s.l.], v. 34, n. 12, p.1501-1504, dez. 1942. American Chemical Society (ACS).

BRITS, Leanne. Vapour-liquid-liquid equilibria measurements for the dehydration of low molecular weight alcohols via heterogeneous azeotropic distillation. 2015. Tese de Doutorado. Stellenbosch: Stellenbosch University.

CONNEMANN, M. *et al.* Measurement and representation of ternary vapour—liquid—liquid equilibria. **Fluid Phase Equilibria**, [s.l.], v. 60, n. 1-2, p.99-118, out. 1990. Elsevier BV.

CORTEZ, Luís Augusto Barbosa; CRUZ, Carlos Henrique de Brito; SOUZA, Gláucia Mendes; CANTARELLA, Heitor; VAN SLUYS, Marie-Anne; MACIEL FILHO, Rubens (org.). **Proálcool - Universidades e Empresas: 40 Anos de Ciência e Tecnologia para o Etanol Brasileiro**. São Paulo: Blucher, 2016. 224 p. Disponível em: https://openaccess.blucher.com.br/article-list/proalcool-universidades-e-empresas-40-anos-deciencia-e-tecnologia-para-o-etanol-brasileiro-310/list#undefined. Acesso em: 05 abr. 2021.

CRISTINO, A.F. *et al.* High-temperature vapour–liquid equilibrium for the water–alcohol systems and modeling with SAFT-VR: 1. Water–ethanol. **Fluid Phase Equilibria**, [s.l.], v. 341, p.48-53, mar. 2013. Elsevier BV.

DALAGER, Per. Vapor-liquid equilibriums of binary systems of water with methanol and ethanol at extreme dilution of the alcohols. **Journal of Chemical & Engineering Data**, [s.l.], v. 14, n. 3, p.298-301, jul. 1969. American Chemical Society (ACS).

Design Institute for Physical Properties (DIPPR). Search Sample Database. Disponível em: https://dippr.aiche.org/SampleDb. Acesso em: 04 mar. 2021.

DIAS, Rafael M.; CHIAVONE-FILHO, Osvaldo; BERNARDO, André; GIULIETTI, Marco. Vapour-liquid equilibria for (water + ethanol + fructose): experimental data and thermodynamic modelling. **The Journal of Chemical Thermodynamics**, [S.L.], v. 115, p. 27-33, dez. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.jct.2017.07.021.

DIAS, Marina O.S.; MODESTO, Marcelo; ENSINAS, Adriano V.; NEBRA, Silvia A.; MACIEL FILHO, Rubens; ROSSELL, Carlos E.V. Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems. **Energy**, [S.L.], v. 36, n. 6, p. 3691-3703, jun. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.energy.2010.09.024.

DOHERTY, Michael F.; KNAPP, Jeffrey P. Distillation, Azeotropic, and Extractive. **Kirk-Othmer Encyclopedia of Chemical Technology**, [S.L.], v. 8, p. 786-851, 2 ago. 2004. John Wiley & Sons, Inc. http://dx.doi.org/10.1002/0471238961.0409192004150805.a01.pub2.

Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Árvore do conhecimento Agroenergia. Disponível em:

https://www.agencia.cnptia.embrapa.br/gestor/agroenergia/arvore/CONT000fbl23vn102wx5e o0sawqe3c0lp4xz.html#:~:text=Atualmente% 2C% 20as% 20principais% 20mat% C3% A9rias% 2Dprimas,da% 20cana% 2Dde% 2Da% C3% A7% C3% BAcar. Acesso em: 7 abr. 2021.

FREDENSLUND, Aage *et al.* DETERMINATION OF UNIFAC PARAMETERS. In: FREDENSLUND, Aage; GMEHLING, Jürgen; RASMUSSEN, Peter. **Vapor-liquid** equilibria using UNIFAC. Amsterdan: Elsevier, 1977. Cap. 5. p. 65-85.

GRISWOLD, John; HANEY, J. D.; KLEIN, V. A. Ethanol-Water System - Vapor-Liquid Properties at High Pressure. **Industrial & Engineering Chemistry**, [s.l.], v. 35, n. 6, p.701-704, jun. 1943. American Chemical Society (ACS).

HAYDEN, G. e O'CONNELL, J.P. Ind. Eng. Chem. Process Des. Dev., p.14, p.209, 1975.

HERRAIZ, J.; SHEN, Shubao; CORONAS, A. Vapor–Liquid Equilibria for Methanol + Poly (ethylene glycol) 250 Dimethyl Ether. **Journal of Chemical & Engineering Data**, [s.l.], v. 43, n. 2, p.191-195, mar. 1998. American Chemical Society (ACS).

IWAKABE, Koichi; KOSUGE, Hitoshi. Isobaric vapor–liquid–liquid equilibria with a newly developed still. Fluid Phase Equilibria, [s.l.], v. 192, n. 1-2, p.171-186, dez. 2001. Elsevier BV.

JONES, C. A.; SCHOENBORN, E. M.; COLBURN, A. P. Equilibrium Still for Miscible Liquids. Industrial & Engineering Chemistry, [s.l.], v. 35, n. 6, p.666-672, jun. 1943. American Chemical Society (ACS).

KAMIHAMA, Naoki *et al.* Isobaric Vapor–Liquid Equilibria for Ethanol + Water + Ethylene Glycol and Its Constituent Three Binary Systems. **Journal of Chemical & Engineering Data**, [s.l.], v. 57, n. 2, p.339-344, 13 jan. 2012. American Chemical Society (ACS).

KENNAN, J.H., *et al.* Steam Tables. Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases. John Wiley & Sons, Inc. New York (1969).

KIRAN, Bandaru; JANA, Amiya K. A hybrid heat integration scheme for bioethanol separation through pressure-swing distillation route. **Separation and Purification Technology**, [S.L.], v. 142, p. 307-315, mar. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.seppur.2015.01.003.

KLEPÁČOVÁ, Katarína *et al.* Vapor Pressures of Several Commercially Used Alkanolamines. **Journal of Chemical & Engineering Data,** [s.l.], v. 56, n. 5, p.2242-2248, 12 maio 2011. American Chemical Society (ACS).

KNAPP, Jeffrey P.; DOHERTY, Michael F. A new pressure-swing-distillation process for separating homogeneous azeotropic mixtures. **Industrial & Engineering Chemistry Research**, [S.L.], v. 31, n. 1, p. 346-357, jan. 1992. American Chemical Society (ACS). http://dx.doi.org/10.1021/ie00001a047.

KOJIMA, Kazuo; OCHI, Kenji; NAKAZAWA, Yutaka. Relationship between Liquid Activity Coefficient and Composition for Ternary System. **Chemical Engineering**, [s.l.], v. 32, n. 5, p.441-446, 1968. Society of Chemical Engineers, Japan. http://dx.doi.org/10.1252/kakoronbunshu1953.32.441.

KOJIMA, K.; KATO, M.. Medição da curva de ebulição sob pressurização e descompressão. **Kagaku Kogaku** v. 33 p.769-775, 1969.

KOJIMA, K; TOCHIGI, K; SEKI, H.; WATASE, K. Determination of vapor liquid equilibrium from boiling point curve. **Kagaku Kogaku**, 32 (1968), 149-153.

KRETSCHMER, CARL B.; WIEBE, Richard. Liquid-Vapor Equilibrium of Ethanol-Toluene Solutions. Journal of the American Chemical Society, [s.l.], v. 71, n. 5, p.1793-1797, maio 1949. American Chemical Society (ACS).

KUMAR, Santosh; SINGH, Neetu; PRASAD, Ram. Anhydrous ethanol: a renewable source of energy. **Renewable and Sustainable Energy Reviews**, [S.L.], v. 14, n. 7, p. 1830-1844, set. 2010. Elsevier BV. http://dx.doi.org/10.1016/j.rser.2010.03.015.

KURIHARA, Kiyofumi; NAKAMICHI, Mikiyoshi; KOJIMA, Kazuo. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems. **Journal of Chemical & Engineering Data**, [s.l.], v. 38, n. 3, p.446-449, jul. 1993. American Chemical Society (ACS). http://dx.doi.org/10.1021/je00011a031.

KURIHARA, Kiyofumi; MINOURA, Tsuyoshi; TAKEDA, Kouichi; KOJIMA, Kazuo. Isothermal Vapor-Liquid Equilibria for Methanol + Ethanol + Water, Methanol + Water, and Ethanol + Water. **Journal of Chemical & Engineering Data**, [s.l.], v. 40, n. 3, p.679-684, maio 1995. American Chemical Society (ACS). http://dx.doi.org/10.1021/je00019a033.

LAI, Hung-sheng; LIN, Yi-feng; TU, Chein-hsiun. Isobaric (vapor+liquid) equilibria for the ternary system of (ethanol+water+1,3-propanediol) and three constituent binary systems at P=101.3kPa. **The Journal of Chemical Thermodynamics**, [s.l.], v. 68, p.13-19, jan. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.jct.2013.08.020.

LEI, Zhigang; WANG, Hongyou; ZHOU, Rongqi; DUAN, Zhanting. Influence of salt added to solvent on extractive distillation. **Chemical Engineering Journal**, [s.l.], v. 87, n. 2, p.149-156, jun. 2002. Elsevier BV. http://dx.doi.org/10.1016/s1385-8947(01)00211-x.

LEWIS, G.N. e RANDALL, M. REVISED por PITZER, K.S. e BREWER, L. *Thermodynamics*. 2nd ed., McGraw-Hill, 1961.

LI, Geng; YIN, Xianqing. Investigation on Isobaric Vapor–Liquid Equilibria of the Isopropyl Acetate + Water + Ethanol System. **Journal of Chemical & Engineering Data**, [s.l.], v. 63, n. 6, p.2009-2014, 29 maio 2018. American Chemical Society (ACS).

LIU, Chia-Tsun; LINDSAY, William T. Vapor pressure of deuterated water from 106 to 300.deg. **Journal of Chemical & Engineering Data**, [S.L.], v. 15, n. 4, p. 510-513, out. 1970. American Chemical Society (ACS). http://dx.doi.org/10.1021/je60047a015.

MACIEL, Jéssica Caroline da Silva Linhares. **Estudo do equilíbrio líquido-vapor do** sistema água+etanol+líquido iónico visando a separação do álcool anidro. 2012. 131 f. Dissertação (Mestrado) - Curso de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, 2012.

MATUGI, Karina *et al.* Vapor-Liquid Equilibrium Calculation for Simulation of Bioethanol Concentration from Sugarcane. **Brazilian Journal of Chemical Engineering**, [S.L.], v. 35, n. 2, p. 341-352, jun. 2018. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/0104-6632.20180352s20160278. MCCRACKEN, P. G.; STORVICK, T. S.; SMITH, J. M. Phase Behavior from Enthalpy Measurements. **Journal of Chemical & Engineering Data**, [s.l.], v. 5, n. 2, p.130-132, abr. 1960. American Chemical Society (ACS).

MERTL I.: II. Phase Equilibria in the Ternary System Ethyl Acetate-Ethanol-Water. Collect. Czech. **Chem. Commun.** 37 (1972) 366-374

MULIA-SOTO, Jorge Francisco; FLORES-TLACUAHUAC, Antonio. Modeling, simulation and control of an internally heat integrated pressure-swing distillation process for bioethanol separation. **Computers & Chemical Engineering**, [S.L.], v. 35, n. 8, p. 1532-1546, ago. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.compchemeng.2011.03.011.

NAVARRO-ESPINOSA, Iván R.; CARDONA, Carlos A.; LÓPEZ, Jimmy A. Experimental measurements of vapor–liquid equilibria at low pressure: Systems containing alcohols, esters and organic acids. **Fluid Phase Equilibria**, [s.l.], v. 287, n. 2, p.141-145, jan. 2010. Elsevier BV. http://dx.doi.org/10.1016/j.fluid.2009.10.002.

NIESEN, V.; PALAVRA, A.; KIDNAY, A.j.; YESAVAGE, V.F. An apparatus for vapor liquid equilibrium at elevated temperatures and pressures and selected results for the water ethanol and methanol—ethanol systems. **Fluid Phase Equilibria**, [s.l.], v. 31, n. 3, p.283-298, jan. 1986. Elsevier BV. http://dx.doi.org/10.1016/0378-3812(86)87013-3.

NOVACANA. Curitiba: Novacana Data, 2012. Diária. Disponível em: https://www.novacana.com/etanol/controlequalidade#:~:text=Em%20rela%C3%A7%C3%A3 o%20%C3%A0%20massa%20alco%C3%B3lica,for%20importado%2C%20distribu%C3%A Ddo%20ou%20revendido. Acesso em: 10 abr. 2021.

OLIVEIRA, H. N. M. **DETERMINAÇÃO DE DADOS DE EQUILÍBRIO LÍQUIDO-VAPOR PARA SISTEMAS HIDROCARBONETOS E DESENVOLVIMENTO DE UMA NOVA CÉLULA DINÂMICA**. Tese (Doutorado em Engenharia Química). Universidade Federal do Rio Grande do Norte, Natal, 2003.

PAUL, R. N. Study of liquid-vapor equilibrium in improved equilibrium still. **Journal of Chemical & Engineering Data**, [s.l.], v. 21, n. 2, p.165-169, abr. 1976. American Chemical Society (ACS). http://dx.doi.org/10.1021/je60069a013.

PEMBERTON, R.C; MASH, C.J. Thermodynamic properties of aqueous non-electrolyte mixtures II. Vapour pressures and excess Gibbs energies for water + ethanol at 303.15 to 363.15 K determined by an accurate static method. **The Journal of Chemical Thermodynamics**, [s.l.], v. 10, n. 9, p.867-888, set. 1978. Elsevier BV. http://dx.doi.org/10.1016/0021-9614(78)90160-x.

PETROBRAS. **Composição de preços ao consumidor**. 2021. Disponível em: https:// https://petrobras.com.br/pt/nossas-atividades/composicao-de-precos-de-venda-aoconsumidor/. Acesso em: 05 abr. 2021.

PHUTELA, R.C.; KOONER, Z.S.; FENBY, D.V. Vapour Pressure Study of Deuterium Exchange Reactions in Water-Ethanol Systems: Equilibrium Constant Determination. **Australian Journal of Chemistry**, [s.l.], v. 32, n. 11, p.2353-2359, 1979. CSIRO Publishing. http://dx.doi.org/10.1071/ch9792353.

PRAUSNITZ, J.M.; LICHTENTHALER, R.N.; AZEVÊDO, E.G. Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall, Inc, 1986.

RIEDER, Robert M.; THOMPSON, A. Ralph. Vapor-Liquid Equilibria Measured by a Gillespie Still - Ethyl Alcohol - Water System. **Industrial & Engineering Chemistry**, [s.l.], v. 41, n. 12, p.2905-2908, dez. 1949. American Chemical Society (ACS). http://dx.doi.org/10.1021/ie50480a060.

RIUS A.; OTERO J.L.; MACARRON A.: systèmes méthanol—acide acétique; éthanol acide acétique; n-propanol—acide acétique; n-butanol—acide acétique. **Chem.Eng.Sci**. 10 (1959) 105-111.

SAUERMANN, Peter *et al.* The poT properties of ethanol + hexane. **Fluid Phase Equilibria**, [s.l.], v. 112, n. 2, p.249-272, dez. 1995. Elsevier BV.

SAGAR, Adjay s; RAHMAN, Imran. Optimization of Pressure-Swing Distillation by Evolutionary Techniques: separation of ethanol-water and acetonitrile-water mixtures. **Chemical Product and Process Modeling**, [S.L.], v. 13, n. 2, p. 1-16, 13 out. 2017. Walter de Gruyter GmbH. http://dx.doi.org/10.1515/cppm-2017-0007.

SCATCHARD, George; RAYMOND, C. L. Vapor—Liquid Equilibrium. II. Chloroform— Ethanol Mixtures at 35, 45 and 55°. **Journal of the American Chemical Society**, [s.l.], v. 60, n. 6, p.1278-1287, jun. 1938. American Chemical Society (ACS).

SCOPUS. Elsevier's. Scopus Preview. Disponível em: https://www.scopus.com/. Acesso em: 02 abr. 2021.

SILVA, Camila de Souza; LEAL, Cristiane; MEGALE, Eliana Zaroni; MAHIAS, Gabriel Bustamante; MENDES, Marisa Fernandes. Equilíbrio Líquido-Vapor dos Sistemas Ternários Etanol-Água-Ca(NO3)2/[EMIM][ES]/[EMIM][Cl] A 101,3 kPa. Brazilian Applied Science Review, [S.L.], v. 4, n. 3, p. 1799-1810, 2020. Brazilian Applied Science Review. http://dx.doi.org/10.34115/basrv4n3-084.

SMITH, J.M.; VAN NESS, Hendrick C.; ABBOTT, Michael M.; SWIHART, Mark T. **Introduction to Chemical Engineering Thermodynamics**. 8. ed. New York: McGraw-Hill Education, 2018. 769 p.

STIMSON, H.F. Some precise measurements of the vapor pressure of water in the range from 25 to 100 C. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, [s.l.], v. 73, n. 5, p.493-496, set. 1969. National Institute of Standards and Technology (NIST).

SVOBODA, V.; HYNEK, V.; PICK, J. Liquid-vapour equilibrium. XXXVIII. Simultaneous determination of vapour-liquid equilibrium and integral isobaric evaporation heat of a mixture. Collection of Czechoslovak Chemical Communications, [s.l.], v. 33, n. 8, p.2584-2597, 1968. **Institute of Organic Chemistry & Biochemistry**. http://dx.doi.org/10.1135/cccc19682584.

União da Indústria da Cana-de-Açúcar (UNICA). **Consumo de combustíveis**. 2020. Disponível em: https://observatoriodacana.com.br/historico-de-consumo-decombustiveis.php?idMn=11&tipoHistorico=10&acao=visualizar&idTabela=2484&produto=E tanol%2Bhidratado%2Bcombust%2526iacute%253Bvel&nivelAgregacao=1. Acesso em: 05 abr. 2021.

VU, Dung T. *et al.* Vapor–Liquid Equilibria in the Systems Ethyl Lactate + Ethanol and Ethyl Lactate + Water. **Journal of Chemical & Engineering Data**, [s.l.], v. 51, n. 4, p.1220-1225, jul. 2006. American Chemical Society (ACS). http://dx.doi.org/10.1021/je050537y.

XING, Yan *et al.* Measurement of Bubble-Point Vapor Pressure for Systems of JP-10 with Ethanol. **Energy & Fuels**, [s.l.], v. 21, n. 2, p.1048-1051, mar. 2007. American Chemical Society (ACS).

XIN-YANG, Liu; DA-JUN, Shang; ZHI-YONG, Liu. Comparison of extractive and pressureswing distillation for separation of tetrahydrofuran-water mixture. **Chemical Engineering Transactions**, [S.L.], v. 61, p. 1423-1428, out. 2017. AIDIC: Italian Association of Chemical Engineering. http://dx.doi.org/10.3303/CET1761235.

YAMAMOTO, Hideki; TERANO, Tamotsu; NISHI, Yasuharu; TOKUNAGA, Junji. Vapor-Liquid Equilibria for Methanol + Ethanol + Calcium Chloride, + Ammonium Iodide, and + Sodium Iodide at 298.15 K. **Journal of Chemical & Engineering Data**, [s.l.], v. 40, n. 2, p.472-477, mar. 1995. American Chemical Society (ACS). http://dx.doi.org/10.1021/je00018a026.

YANG, Bolun; WANG, Huajun. Vapor–Liquid Equilibrium for Mixtures of Water, Alcohols, and Ethers. **Journal of Chemical & Engineering Data**, [s.l.], v. 47, n. 5, p.1324-1329, set. 2002. American Chemical Society (ACS). http://dx.doi.org/10.1021/je010223k.

WANG, Yinglong; CUI, Peizhe; MA, Yuhong; ZHANG, Zhen. Extractive distillation and pressure-swing distillation for THF/ethanol separation. **Journal of Chemical Technology & Biotechnology**, [S.L.], v. 90, n. 8, p. 1463-1472, 26 jun. 2014. Wiley. http://dx.doi.org/10.1002/jctb.4452.

ZANDIJCKE, F. V.; VERHOEYE, L. The vapour-liquid equilibrium of ternary systems with limited miscibility at atmospheric pressure. **Journal of Applied Chemistry and Biotechnology**, [s.l.], v. 24, n. 12, p.709-729, 25 abr. 2007. Wiley. http://dx.doi.org/10.1002/jctb.5020241202.

ZHAO, Jin; LI, Chun-xi; WANG, Zi-hao. Vapor Pressure Measurement and Prediction for Ethanol + Methanol and Ethanol + Water Systems Containing Ionic Liquids. **Journal of Chemical & Engineering Data**, [s.l.], v. 51, n. 5, p.1755-1760, set. 2006. American Chemical Society (ACS).

ZIELKIEWICZ, J.; KONITZ, A. Vapour—liquid equilibrium in ternary system N, Ndimethyl-formide+ water+ ethanol at 313.15 K. **Fluid phase equilibria**, v. 63, n. 1-2, p. 129-139, 1991.

Temperatura (°C)	Pressão de vapor (mmHg)	Referência
19,6220	42,95	
23,6330	54,52	
25,7220	61,54	
28,1570	70,73	
33,3340	94,253	
36,000	112,37	
39,2370	129,01	
43,2280	158,33	
47,3490	194,37	
51,0810	232,87	
54,6640	275,72	
58,8730	334,41	Λ mbrose e Spreke (1970)
62,8650	399,53	Ambrose e Sprake (1970)
66,5780	469,33	
70,5590	555,28	
74,9800	665,78	
77,4050	733,72	
77,9890	750,968	
78,3400	761,446	
78,4970	766,194	
79,1880	787,435	
82,3620	890,464	
85,8360	1016,474	
89,6060	1168,773	
93,4810	1345,015	
56,520	300,0	
62,910	400,0	
68,080	500,0	Kamihama et al. (2012)
72,440	600,0	
76,230	700,0	
77,880	748,1	
25,000	59,02	
34,988	103,03	-
44,994	172,95	Kretschmer, Carl e Wiebe (1949)
50,000	220,94	
54,988	279,79	-
65,000	438,04	-
78,553	/66,/1	
34,370	98,93	
36,740	112,9	
39,060	128,5	
42,090	150,0	Li eLie Yin (2018)
45,270	175,9	
47,160	192,9	-
48,980	210,9	-
50,950	231,4	

APÊNDICE A – DADOS APROVADOS DE P^{VAP} DO ETANOL DE 19,622 A 134,188°C

52,810	252,6		
54,370	271,5		
56,430	300,0		
58,340	326,2		
60,300	357,2		
62,010	385,2		
63,610	413,4		
65,570	450,4		
67,040	478,8		
68,350	506,7		
69,910	540,8		
71,220	570,0		
35,0	102,78		
40,0	134,09		
45,0	172,76		
50,0	221,18	Secteband a Desmand (1028)	
55,0	279,86	Scalchard e Raymond (1938)	
60,0	351,32		
65,0	438,36		
70,0	542,09		
75,0	666,49		
75,39	674,6	Vinc. et al. (2007)	
76,97	718,6		
78,35	759,59		
30,68	81,46		
37,99	121,1		
44,75	171,3		
49,94	220,6		
53,65	263,3	Zhao, Li e Wang (2006)	
57,41	313,2		
60,79	364,6		
64,03	420,5		
66,82	474,0		
69,15	523,0		
60,5180	361,15		
69,8430	539,74		
80,2880	822,22	Commune of al (1005)	
86,8580	1055,6	Sauermann et al. (1995)	
94,1750	1378,1	Kojima e Kato (1969)	
102,125	1814,5		
129,246	4210,6		
134,188	4837,7		
43,72	162,26		
46,86	190,00		
51,75	240,84		
55,69	289,10	Kojima e Kato (1969)	
59,23	339,87		
62,42	391,10		
×	, -	1	

65,16	441,64
' 67,73	491,11
69,98	542,26
72,19	593,41
78,32	760,00
89,12	1147
94,11	1373
98,91	1621
101,29	1764
112,60	2552

Temperatura (°C)	Pressão de vapor (mmHg)	Referência
10,00	9,2077	
20,00	17,544	
30,00	31,848	
40,00	55,384	
50,00	92,625	
60,00	149,56	
70,00	233,94	
80,00	355,45	
90,00	526,09	
100,00	760,19	
110,00	1074,6	Kennan <i>et al</i> .(1969)
120,00	1489,1	
130,00	2025,9	
140,00	2710,0	
150,00	3568,8	
160,00	4633,9	
170,00	5938,2	
180,00	7516,4	
190,00	9408,8	
200,00	11654	
210,00	14298	
96,124	660,644	
96,478	669,273	
96,484	669,411	
96,721	675,203	
96,999	682,128	
97,167	686,300	
97,205	687,241	
97,519	695,082	
97,772	701,501	
97,931	705,553	Boottio a Plaisdall (1027)
98,115	710,274	Beattle e Blaisdell (1957)
98,294	714,856	
98,599	722,768	
98,713	725,756	
98,766	727,132	
99,099	735,862	
99,299	741,177	
99,513	746,892	
99,655	750,652	
99,838	755,610	

APÊNDICE B – DADOS APROVADOS DE P^{VAP} DA ÁGUA DE 10,0 °C A 210,0 °C

100,054	761,445	
100,191	765,185	7
100,282	767,640	7
100,576	775,742	
100,760	780,865	7
100,961	786,414	7
101,069	789,444	7
101,310	796,220	7
101,571	803,642	7
101,662	806,188	
101,714	807,675	7
101,995	815,760	
102,136	819,842	
102,347	825,930	
102,390	827,162	
102,673	835,436	
102,985	844,621	
103,062	846,893	
75,94	300,0	
83,02	400,0	
88,72	500,0	- Komihama at al (2012)
93,54	600,0	Kammama $et at.(2012)$
97,73	700,0	
99,61	750,06	
25,00	23,766	
40,00	55,364	
50,00	92,592	
60,00	149,509	Stimson (1969)
70,00	233,846	
80,00	355,342	
100,00	759,998	7

Temperatura (°C)	Pressão de vapor (mmHg)	Referência
19,6220	42,95	
23,6330	54,52	
25,7220	61,54	
28,1570	70,73	
33,3340	94,253	
36,6060	112,37	
39,2370	129,01	
43,2280	158,33	
47,3490	194,37	
51,0810	232,87	
54,6640	275,72	
58,8730	334,41	
62,8650	399,53	Ambrose e Sprake (1970)
66,5780	469,33	
70,5590	555,28	
74,9800	665,78	
77,4050	733,72	
77,9890	750,968	
78,3400	761,446	
78,4970	766,194	
79,1880	787,435	
82,3620	890,464	
85,8360	1016,474	
89,6060	1168,773	
93,4810	1345,015	
56,520	300,0	
62,910	400,0	
68,080	500,0	Kamihama et al (2012)
72,440	600,0	Kaminama <i>et al</i> .(2012)
76,230	700,0	
77,880	748,1	
25,000	59,02	
34,988	103,03	
44,994	172,95	
50,000	220,94	Kretschmer, Carl e Wiebe (1949)
54,988	279,79	
65,000	438,04	
78,553	766,71	
34,370	98,93	
36,740	112,9	
39,060	128,5	
42,090	150,0	Li e Yin (2018)
45,270	175,9	
47,160	192,9	
48,980	210,9	

APÊNDICE C – DADOS APROVADOS DE P^{VAP} DO ETANOL DE 19,622 A 243,33 °C

50.950	231.4	
52,810	252.6	
54,370	271,5	
56,430	300,0	
58,340	326,2	
60,300	357,2	
62,010	385,2	
63,610	413,4	
65,570	450,4	
67,040	478,8	
68,350	506,7	
69,910	540,8	
71,220	570,0	
35,0	102,78	
40,0	134,09	
45,0	172,76	
50,0	221,18	
55,0	279,86	Scatchard e Raymond (1938)
60,0	351,32	
65,0	438,36	
70,0	542,09	
75,0	666,49	
75,39	674,6	
76,97	718,6	Xing <i>et al.</i> (2007)
78,35	759,59	
30,68	81,46	
37,99	121,1	
44,75	171,3	
49,94	220,6	
53,65	263,3	Zhao Lie Wang (2006)
57,41	313,2	
60,79	364,6	-
64,03	420,5	-
66,82	474,0	4
69,15	523,0	
60,5180	361,15	-
69,8430	539,74	-
80,2880	822,22	-
86,8580	1055,6	-
94,1750	1378,1	-
102,125	1814,5	
129,246	4210,6	Sauermann <i>et al.</i> (1995)
134,188	4837,7	4
140,569	5756,5	4
150,569	7430,8	4
154,296	8172,7	4
160,251	9444,8	4
164,630	10472	

170,183	11882	
180,151	14792	
184,871	16339	
189,720	18064	
200,082	22191	
43,72	162,26	
46,86	190,00	
51,75	240,84	
55,69	289,10	
59,23	339,87	
62,42	391,10	
65,16	441,64	
67,73	491,11	
69,98	542,26	
72,19	593,41	
78,32	760,00	
89,12	1147	Kojima e Kato (1969)
94,11	1373	
98,91	1621	
101,29	1764	
112,60	2552	
125,44	3779	
134,65	4899	
146,71	6777	
152,24	7798	
162,88	10093	
172,74	12646	
181,11	15192	
136,67	5171	
163,89	10343	
182,22	15514	
197,22	20686	
209,44	25857	Maaraakan Storwick a Smith (1060)
220,00	31029	
228,33	36200	
235,56	41372	
241,67	46543	
243,33	47940	

Temperatura (°C)	Pressão de vapor (mmHg)	Referência
10,00	9,2077	
20,00	17,544	
30,00	31,848	
40,00	55,384	
50,00	92,625	
60,00	149,56	
70,00	233,94	
80,00	355,45	
90,00	526,09	
100,00	760,19	
110,00	1074,6	Kennan <i>et al.</i> (1969)
120,00	1489,1	
130,00	2025,9	
140,00	2710,0	
150,00	3568,8	
160,00	4633,9	
170,00	5938,2	
180,00	7516,4	
190,00	9408,8	
200,00	11654	
210,00	14298	
96,124	660,644	
96,478	669,273	
96,484	669,411	
96,721	675,203	
96,999	682,128	
97,167	686,300	
97,205	687,241	
97,519	695,082	
97,772	701,501	
97,931	705,553	
98,115	710,274	Beattie e Blaisdell (1937)
98,294	714,856	
98,599	722,768	
98,713	725,756	
98,766	727,132	
99,099	735,862	
99,299	741,177	
99,513	746,892	
99,655	750,652	
99,838	755,610	
100,054	761,445	

APÊNDICE D – DADOS APROVADOS DE P^{VAP} DA ÁGUA DE 10,0 °C A 300,0 °C

100,191	765,185	
100,282	767,640	
100,576	775,742	
100,760	780,865	
100,961	786,414	
101,069	789,444	
101,310	796,220	
101,571	803,642	
101,662	806,188	
101,714	807,675	
101,995	815,760	
102,136	819,842	
102,347	825,930	
102,390	827,162	
102,673	835,436	
102,985	844,621	
103,062	846,893	
75,94	300,0	
83,02	400,0	
88,72	500,0	
93,54	600,0	Kaminama <i>et al</i> .(2012)
97,73	700,0	
99,61	750,06	
25,00	23,766	
40,00	55,364	
50,00	92,592	
60,00	149,509	Stimson (1969)
70,00	233,846	
80,00	355,342	
100,00	759,998	
51,960	101,279	
51,960	101,456	
51,980	101,249	
51,980	101,377	
51,980	101,407	
51,980	101,456	
61,970	163,273	Abrad at $al(2011)$
71,900	253,803	Anmed <i>et al.</i> (2011)
71,920	253,902	
71,920	253,843	
81,880	383,671	
81,880	383,652	
91,820	563,540	
91,820	563,438	

	563,662	91,820
	563,633	91,820
	563,642	91,820
	89,3	49,45
	232	69,85
	524	89,75
Klepáčová et al.(2011)	750,1	99,25
	1125	110,8
	2027	129,2
	3002	142,7
	937,92	106,00
	1740,96	125,00
	2441,14	136,33
	3570,68	150,00
	6695,13	175,00
$\mathbf{Liv} \circ \mathbf{Lindoov} (1070)$	11664,93	200,00
Liu e Lindsay (1970)	17402,67	220,00
	17738,01	221,00
	19129,53	225,00
	29832,76	250,00
	44615,23	275,00
	64432,36	300,00

Fonte: Elaborada pelo autor.

APÊNDICE E – TESTE DE CONSISTÊNCIA PARA DADOS ISOBÁRICOS

O desvio médio relativo em pressão foi calculado com a seguinte Equação:

DESV médio P (%) = $\frac{\text{valor absoluto}\left(\frac{P \text{ estimada - P experimental}}{P experimental}\right)*100}{\text{número de pontos}}$

O desvio médio absoluto em y (DESV Y) corresponde a:

$$DESV Y = \frac{\text{valor absoluto } (y \text{ estimado } - y \text{ experimental})}{\text{número de pontos}}$$

Tabela 8 - Teste de consistência dos dados de Al-rub, Banat e Jumah (1999)

\mathbf{X}^1	PEXP (atm)	PEST (atm)	YEXP	YEST	DESV P (%)	DESV Y	DESV médio P (%)	DESV médio Y
0,0000	1,0000	0,9996	0,0000	0,0000	0,0400	0,0000	0,277	0,005
0,1101	1,0000	1,0021	0,4412	0,4387	0,2100	0,0025		
0,2560	1,0000	0,9928	0,5549	0,5659	0,7200	0,0110		
0,4420	1,0000	1,0094	0,6210	0,6383	0,9400	0,0173		
0,5521	1,0000	0,9998	0,6669	0,6813	0,0200	0,0144		
0,6811	1,0000	0,9977	0,7401	0,7442	0,2300	0,0041		
0,7611	1,0000	0,9992	0,7918	0,7932	0,0800	0,0014		
0,8950	1,0000	0,9975	0,8950	0,8969	0,2500	0,0019		
0,9820	1,0000	0,9993	0,9788	0,9808	0,0700	0,0020		
1,0000	1,0000	0,9979	1,0000	1,0000	0,2100	0,0000		

Fonte: Elaborado pelo autor (2021).

¹ Foi removido o ponto x=0,025 pois apresentava um desvio elevado em pressão.

(atm)(atm)(atm)P%)YVwww0,00001,00000,99990,00000,00000,01000,00000,5090,0140,01501,00001,00020,17000,14560,02000,02230,04401,00000,99660,27600,25070,34000,02530,04601,00000,99690,42000,39900,31000,02100,07901,00001,00370,47300,45800,37000,01500,16301,00001,00630,50800,49560,63000,01240,23011,00001,00620,52400,51160,62000,01240,23011,00001,00640,53200,51960,60000,01310,23011,00001,00460,54700,53390,46000,01310,23011,00001,00460,54700,55150,17000,01530,28101,00001,00170,56900,55150,17000,01530,28101,00001,00170,56900,55150,17000,01570,33701,00000,99430,57560,38000,01440,34000,09950,61200,55270,30000,01640,34401,00000,99500,51200,57000,01570,36701,00000,99530,61200,59240,41000,01960,37010,00000,99530,61200,59240,41000,0196 <th>X</th> <th>PEXP</th> <th>PEST</th> <th>YEXP</th> <th>YEST</th> <th>DESV</th> <th>DESV</th> <th>DES</th> <th>DES</th>	X	PEXP	PEST	YEXP	YEST	DESV	DESV	DES	DES
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(atm)	(atm)		1201	P (%)	Y	V	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			~ /			~ /		médio	médio
0,0000 1,0000 0,9999 0,0000 0,0100 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00253 0,0460 1,0000 0,9946 0,3760 0,3103 0,6200 0,0227 0,0790 1,0000 0,9969 0,4200 0,3990 0,3100 0,0210 0,1190 1,0000 1,0037 0,4730 0,4580 0,3700 0,0124 0,1633 1,0000 1,0062 0,5240 0,5116 0,6200 0,0124 0,2060 1,0000 1,0060 0,5320 0,5196 0,6000 0,0133 0,2360 1,0000 1,0047 0,5440 0,5310 0,5000 0,0153 0,2360 1,0000 1,0017 0,5650 0,5497 0,2100 0,0153 0,2360 1,0000 1,0017 0,5576 0,8000 0,0177 0,3610 1,0000 0,9								P (%)	Y
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,509	0,014
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0150	1,0000	1,0002	0,1700	0,1456	0,0200	0,0244		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0320	1,0000	0,9966	0,2760	0,2507	0,3400	0,0253		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0460	1,0000	0,9938	0,3360	0,3103	0,6200	0,0257		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0680	1,0000	0,9948	0,3980	0,3752	0,5200	0,0228		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0790	1,0000	0,9969	0,4200	0,3990	0,3100	0,0210		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1190	1,0000	1,0037	0,4730	0,4580	0,3700	0,0150		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1630	1,0000	1,0063	0,5080	0,4956	0,6300	0,0124		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1900	1,0000	1,0062	0,5240	0,5116	0,6200	0,0124		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2060	1,0000	1,0060	0,5320	0,5196	0,6000	0,0124		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2320	1,0000	1,0050	0,5440	0,5310	0,5000	0,0130		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2360	1,0000	1,0047	0,5460	0,5327	0,4700	0,0133		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,2390	1,0000	1,0046	0,5470	0,5339	0,4600	0,0131		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,2810	1,0000	1,0021	0,5650	0,5497	0,2100	0,0153		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2860	1,0000	1,0017	0,5670	0,5515	0,1700	0,0155		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2910	1,0000	1,0017	0,5690	0,5533	0,1700	0,0157		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3030	1,0000	1,0008	0,5740	0,5576	0,0800	0,0164		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3440	1,0000	0,9982	0,5900	0,5723	0,1800	0,0177		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3670	1,0000	0,9974	0,5990	0,5808	0,2600	0,0182		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3800	1,0000	0,9966	0,6050	0,5857	0,3400	0,0193		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3920	1,0000	0,9963	0,6100	0,5904	0,3700	0,0196		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3970	1,0000	0,9959	0,6120	0,5924	0,4100	0,0196		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,4100	1,0000	0,9955	0,6170	0,5976	0,4500	0,0194		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,4120	1,0000	0,9953	0,6180	0,5984	0,4700	0,0196		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,4810	1,0000	0,9936	0,6480	0,6290	0,6400	0,0190		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5270	1,0000	0,9933	0,6690	0,6521	0,6700	0,0169		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6170	1,0000	0,9937	0,7150	0,7037	0,6300	0,0113		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6880	1,0000	0,9951	0,7540	0,7501	0,4900	0,0039		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,7220	1,0000	0,9960	0,7750	0,7738	0,4000	0,0012		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,7570	1,0000	0,9973	0,7970	0,7992	0,2700	0,0022		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,8510	1,0000	1,0030	0,8620	0,8716	0,3000	0,0096		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,8980	1,0000	1,0074	0,8990	0,9101	0,7400	0,0111		
0,93101,00001,01160,92800,93811,16000,01010,94401,00001,01370,94100,94931,37000,00830,94701,00001,01400,94300,95201,40000,00900,96701,00001,01740,96300,96971,74000,00671,00001,00101,00001,00000,00000,0000	0,9080	1,0000	1,0087	0,9080	0,9185	0,8700	0,0105		
0,94401,00001,01370,94100,94931,37000,00830,94701,00001,01400,94300,95201,40000,00900,96701,00001,01740,96300,96971,74000,00671,00001,00001,00101,00001,00000,10000,0000	0,9310	1,0000	1,0116	0,9280	0,9381	1,1600	0,0101		
0,94701,00001,01400,94300,95201,40000,00900,96701,00001,01740,96300,96971,74000,00671,00001,00001,00101,00001,00000,10000,0000	0,9440	1,0000	1,0137	0,9410	0,9493	1,3700	0,0083		
0,9670 1,0000 1,0174 0,9630 0,9697 1,7400 0,0067 1,0000 1,0010 1,0000 1,0000 0,1000 0.0000	0,9470	1,0000	1,0140	0,9430	0,9520	1,4000	0,0090		
1,0000 1,0000 1,0010 1,0000 1,0000 0,1000 0,0000	0,9670	1,0000	1,0174	0,9630	0,9697	1,7400	0,0067		
	1,0000	1,0000	1,0010	1,0000	1,0000	0,1000	0,0000		

Tabela 9 - Teste de consistência dos dados de Alvarez et al. (2011)

						· · · · ·		
Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,9999	0,9999	0,0000	0,0000	0,0000	0,0000	0,308	0,007
0,0317	0,9999	1,0071	0,2573	0,2463	0,7201	0,0110		
0,0424	0,9999	0,9920	0,3192	0,2948	0,7901	0,0244		
0,0863	0,9999	0,9982	0,4289	0,4158	0,1700	0,0131		
0,1300	0,9999	0,9979	0,4830	0,4773	0,2000	0,0057		
0,1666	0,9999	1,0057	0,5221	0,5091	0,5801	0,0130		
0,2137	0,9999	1,0017	0,5511	0,5375	0,1800	0,0136		
0,2930	0,9999	1,0002	0,5847	0,5711	0,0300	0,0136		
0,3525	0,9999	1,0049	0,6031	0,5926	0,5001	0,0105		
0,3950	0,9999	0,9998	0,6150	0,6082	0,0100	0,0068		
0,4531	0,9999	0,9956	0,6412	0,6307	0,4300	0,0105		
0,5060	0,9999	0,9962	0,6530	0,6532	0,3700	0,0002		
0,5629	0,9999	0,9976	0,6833	0,6798	0,2300	0,0035		
0,6142	0,9999	0,9985	0,7056	0,7063	0,1400	0,0007		
0,6395	0,9999	0,9974	0,7182	0,7202	0,2500	0,0020		
0,6794	0,9999	0,9982	0,7410	0,7434	0,1700	0,0024		
0,7240	0,9999	0,9996	0,7683	0,7711	0,0300	0,0028		
0,7740	0,9999	0,9995	0,7973	0,8046	0,0400	0,0073		
0,8436	0,9999	1,0035	0,8505	0,8558	0,3600	0,0053		
0,8612	0,9999	1,0032	0,8649	0,8697	0,3300	0,0048		
0,9020	0,9999	1,0040	0,9016	0,9039	0,4100	0,0023		
0,9464	0,9999	1,0061	0,9409	0,9445	0,6201	0,0036		
1,0000	0,9999	1,0052	1,0000	1,0000	0,5301	0,0000		

Tabela 10 - Teste de consistência dos dados de Arce, Martínez-Ageitos e Soto (1996)

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
_							P (%)	Y
0,0000	0,1250	0,1250	0,0000	0,0000	0,0000	0,0000	4,927	0,025
0,0035	0,1250	0,1280	0,0205	0,0235	2,4000	0,0030		
0,0045	0,1250	0,1268	0,0275	0,0300	1,4400	0,0025		
0,0175	0,1250	0,1221	0,1315	0,1085	2,3200	0,0230		
0,0585	0,1250	0,1264	0,3050	0,2902	1,1200	0,0148		
0,0680	0,1250	0,1182	0,3615	0,3219	5,4400	0,0396		
0,0935	0,1250	0,1195	0,4110	0,3912	4,4000	0,0198		
0,1650	0,1250	0,1308	0,5200	0,5077	4,6400	0,0123		
0,2125	0,1250	0,1345	0,5455	0,5478	7,6000	0,0023		
0,2410	0,1250	0,1324	0,5675	0,5636	5,9200	0,0039		
0,3615	0,1250	0,1246	0,6060	0,5933	0,3200	0,0127		
0,4740	0,1250	0,1154	0,6505	0,6067	7,6800	0,0438		
0,4985	0,1250	0,1176	0,6555	0,6113	5,9200	0,0442		
0,5815	0,1250	0,1253	0,6970	0,6394	0,2400	0,0576		
0,6460	0,1250	0,1216	0,7290	0,6796	2,7200	0,0494		
0,6540	0,1250	0,1185	0,7310	0,6860	5,2000	0,0450		
0,7230	0,1250	0,1109	0,7760	0,7517	11,2800	0,0243		
0,7900	0,1250	0,1303	0,8200	0,8295	4,2400	0,0095		
0,8370	0,1250	0,1254	0,8520	0,8859	0,3200	0,0339		
0,8731	0,1250	0,1319	0,8817	0,9246	5,5200	0,0429		
0,8830	0,1250	0,1300	0,8885	0,9342	4,0000	0,0457		
0,8880	0,1250	0,1285	0,8930	0,9388	2,8000	0,0458		
0,8973	0,1250	0,1366	0,9012	0,9469	9,2800	0,0457		
0,9489	0,1250	0,1379	0,9502	0,9819	10,3200	0,0317		
0,9707	0,1250	0,1492	0,9715	0,9915	19,3600	0,0200		
0,9825	0,1250	0,1355	0,9835	0,9955	8,4000	0,0120		
1,0000	0,1250	0,1248	1,0000	1,0000	0,1600	0,0000		

Tabela 11 – Teste de consistência dos dados de Beebe et al. (1942) a 95mmHg

V	DEXD	DEST	VEVP	VEST	DESV	DESV	DESV	DESV
Λ	(atm)	(atm)	ILAF	1691	P(%)	V	médio	médio
	(atili)	(atili)			1 (70)	1	P(%)	Y
0,0000	0,2500	0,2498	0.0000	0.0000	0,0800	0,0000	3,695	0,023
0,0160	0,2500	0,2423	0,1460	0,1230	3,0800	0,0230	,	,
0,0370	0,2500	0,2499	0,2755	0,2393	0,0400	0,0362		
0,0650	0,2500	0,2485	0,3650	0,3452	0,6000	0,0198		
0,0900	0,2500	0,2470	0,4125	0,4101	1,2000	0,0024		
0,1580	0,2500	0,2446	0,5015	0,5109	2,1600	0,0094		
0,2090	0,2500	0,2674	0,5455	0,5471	6,9600	0,0016		
0,2385	0,2500	0,2645	0,5650	0,5605	5,8000	0,0045		
0,3535	0,2500	0,2438	0,6045	0,5858	2,4800	0,0187		
0,4705	0,2500	0,2432	0,6445	0,6025	2,7200	0,0420		
0,4970	0,2500	0,2335	0,6540	0,6090	6,6000	0,0450		
0,5805	0,2500	0,2550	0,6925	0,6396	2,0000	0,0529		
0,6525	0,2500	0,2336	0,7260	0,6861	6,5600	0,0399		
0,7000	0,2500	0,2502	0,7550	0,7266	0,0800	0,0284		
0,7200	0,2500	0,2379	0,7685	0,7467	4,8400	0,0218		
0,7895	0,2500	0,2592	0,8152	0,8227	3,6800	0,0075		
0,8416	0,2500	0,2503	0,8502	0,8824	0,1200	0,0322		
0,8735	0,2500	0,2530	0,8790	0,9161	1,2000	0,0371		
0,8970	0,2500	0,2667	0,8990	0,9383	6,6800	0,0393		
0,9485	0,2500	0,2726	0,9466	0,9769	9,0400	0,0303		
0,9600	0,2500	0,2509	0,9580	0,9835	0,3600	0,0255		
0,9719	0,2500	0,2883	0,9700	0,9893	15,3200	0,0193		
0,9812	0,2500	0,2676	0,9798	0,9933	7,0400	0,0135		
1,0000	0,2500	0,2499	1,0000	1,0000	0,0400	0,0000		

Tabela 12 – Teste de consistência dos dados de Beebe et al. (1942) a 190mmHg

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,5000	0,4999	0,0000	0,0000	0,0200	0,0000	1,937	0,016
0,0160	0,5000	0,5006	0,1470	0,1475	0,1200	0,0005		
0,0315	0,5000	0,5100	0,2305	0,2427	2,0000	0,0122		
0,0600	0,5000	0,5024	0,3765	0,3534	0,4800	0,0231		
0,0855	0,5000	0,4776	0,4300	0,4145	4,4800	0,0155		
0,1465	0,5000	0,4965	0,5005	0,4925	0,7000	0,0080		
0,2060	0,5000	0,5169	0,5415	0,5288	3,3800	0,0127		
0,2360	0,5000	0,5158	0,5600	0,5407	3,1600	0,0193		
0,3495	0,5000	0,4937	0,5945	0,5725	1,2600	0,0220		
0,4675	0,5000	0,4936	0,6410	0,6077	1,2800	0,0333		
0,4875	0,5000	0,4872	0,6425	0,6155	2,5600	0,0270		
0,5800	0,5000	0,4991	0,6890	0,6605	0,1800	0,0285		
0,6825	0,5000	0,5052	0,7250	0,7314	1,0400	0,0064		
0,7000	0,5000	0,4982	0,7495	0,7459	0,3600	0,0036		
0,7175	0,5000	0,4872	0,7680	0,7609	2,5600	0,0071		
0,7890	0,5000	0,5079	0,8111	0,8256	1,5800	0,0145		
0,8420	0,5000	0,4912	0,8488	0,8760	1,7600	0,0272		
0,8749	0,5000	0,4920	0,8768	0,9063	1,6000	0,0295		
0,8967	0,5000	0,5198	0,8973	0,9254	3,9600	0,0281		
0,9483	0,5000	0,5281	0,9440	0,9668	5,6200	0,0228		
0,9727	0,5000	0,5223	0,9692	0,9836	4,4600	0,0144		
1,0000	0,5000	0,5003	1,0000	1,0000	0,0600	0,0000		

Tabela 13 – Teste de consistência dos dados de Beebe et al. (1942) a 380mmHg

Tabela 14 - Teste de consistência dos dados de Beebe et al. (1942) a 760mmHg

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,436	0,010
0,2010	1,0000	1,0011	0,5285	0,5113	0,1100	0,0172		
0,6490	1,0000	0,9929	0,7195	0,7475	0,7100	0,0280		
0,9075	1,0000	1,0125	0,9040	0,9099	1,2500	0,0059		
1,0000	1,0000	1,0010	1,0000	1,0000	0,1000	0,0000]	

	\mathbf{X}^1	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
		(atm)	(atm)			P (%)	Y	médio	médio
								P (%)	Y
	0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,357	0,0089
	0,0000	1,0000	1,0000	0,0000	0,0000	0,0000	0,0000		
	0,0000	1,0000	1,0000	0,0000	0,0000	0,0000	0,0000		
	0,0000	1,0000	1,0002	0,0003	0,0002	0,0200	0,0001		
	0,0000	1,0000	1,0001	0,0003	0,0002	0,0100	0,0001		
	0,0000	1,0000	1,0001	0,0002	0,0002	0,0100	0,0000		
	0,0002	1,0000	1,0021	0,0025	0,0023	0,2100	0,0002		
	0,0001	1,0000	1,0015	0,0016	0,0017	0,1500	0,0001		
	0,0002	1,0000	1,0019	0,0025	0,0021	0,1900	0,0004		
	0,0002	1,0000	1,0015	0,0020	0,0017	0,1500	0,0003		
	0,0048	1,0000	0,9943	0,0727	0,0507	0,5700	0,0220		
	0,0040	1,0000	0,9903	0,0592	0,0428	0,9700	0,0164		
	0,0043	1,0000	0,9913	0,0598	0,0457	0,8700	0,0141		
	0,0315	1,0000	0,9945	0,2582	0,2407	0,5500	0,0175		
	0,0370	1,0000	1,0234	0,3625	0,2671	2,3400	0,0954		
	0,0740	1,0000	0,9912	0,3881	0,3901	0,8800	0,0020		
	0,1218	1,0000	0,9961	0,4658	0,4728	0,3900	0,0070		
	0,1283	1,0000	0,9975	0,4878	0,4806	0,2500	0,0072		
	0,2548	1,0000	1,0005	0,5626	0,5670	0,0500	0,0044		
	0,2597	1,0000	1,0050	0,5539	0,5690	0,5000	0,0151		
	0,3937	1,0000	1,0028	0,6201	0,6161	0,2800	0,0040		
	0,3971	1,0000	0,9981	0,6128	0,6173	0,1900	0,0045		
	0,5472	1,0000	0,9987	0,6789	0,6732	0,1300	0,0057		
	0,6980	1,0000	0,9989	0,7568	0,7496	0,1100	0,0072		
	1,0000	1,0000	1,0010	1,0000	1,0000	0,1000	0,0000		
1	Fonte Fla	horado na	lo autor (?	021)	•	•	•	•	

Tabela 15 – Teste de consistência dos dados de Dalager (1969)

 $^{\rm l}$ Foram removidos os pontos x=0,8400, x=0,8393, x=0,9140 e x=0,9099 pois não representavam o comportamento azeótropo de forma adequada.

X PEXP PEST YEXP YEXP YEST DESV DESV médio P (%) Y 0,0000 0,9263 0,9422 0,0000 0,0000 1,7165 0,0000 0,647 0,019 0,0043 0,9263 0,9322 0,0632 0,508 0,6369 0,0124 0,0117 0,9263 0,9349 0,1429 0,1237 0,9284 0,0192 0,0131 0,9263 0,9124 0,1677 0,1360 1,5006 0,0317 0,0178 0,9263 0,9181 0,2142 0,1734 0,8852 0,0408 0,0261 0,9263 0,9309 0,2679 0,2291 0,4210 0,0388 0,0351 0,9263 0,9284 0,4988 0,4847 0,2267 0,0141 0,1708 0,9263 0,9290 0,5832 0,5707 0,5830 0,0125 0,3791 0,9263 0,9229 0,6462 0,6221 0,3671 0,0241 0,5521 0,9263 0,9286<									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
0,0000 $0,9263$ $0,9422$ $0,0000$ $0,0000$ $1,7165$ $0,0000$ $0,647$ $0,019$ $0,0043$ $0,9263$ $0,9322$ $0,0632$ $0,0508$ $0,6369$ $0,0124$ $0,0117$ $0,9263$ $0,9349$ $0,1429$ $0,1237$ $0,9284$ $0,0192$ $0,0131$ $0,9263$ $0,9124$ $0,1677$ $0,1360$ $1,5006$ $0,0317$ $0,0178$ $0,9263$ $0,9124$ $0,1677$ $0,1360$ $1,5006$ $0,0317$ $0,0178$ $0,9263$ $0,9124$ $0,1677$ $0,1360$ $1,5006$ $0,0317$ $0,0178$ $0,9263$ $0,9124$ $0,1677$ $0,1360$ $1,5006$ $0,0317$ $0,0178$ $0,9263$ $0,9126$ $0,2291$ $0,4210$ $0,0388$ $0,0351$ $0,9263$ $0,9209$ $0,2781$ $0,4966$ $0,0308$ $0,0727$ $0,9263$ $0,9244$ $0,4988$ $0,4847$ $0,2267$ $0,0141$ $0,1708$ $0,9263$ $0,9299$ $0,5832$ $0,5707$ $0,5830$ $0,0125$ $0,3791$ $0,9263$ $0,9229$ $0,6462$ $0,6221$ $0,3671$ $0,0241$ $0,5521$ $0,9263$ $0,9229$ $0,6462$ $0,621$ $0,3089$ $0,6404$ $0,9263$ $0,9225$ $0,7836$ $0,0432$ $0,0144$ $0,6639$ $0,9263$ $0,9225$ $0,7826$ $0,0432$ $0,0183$ $0,7876$ $0,9263$ $0,9253$ $0,8191$ $0,8075$ $0,1800$ $0,0116$ $0,7826$ $0,9263$		(atm)	(atm)			P (%)	Y	médio	médio
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0405	0.0000	0.0000		0.0000	P (%)	Y
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0000	0,9263	0,9422	0,0000	0,0000	1,7165	0,0000	0,647	0,019
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0043	0,9263	0,9322	0,0632	0,0508	0,6369	0,0124		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0117	0,9263	0,9349	0,1429	0,1237	0,9284	0,0192		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0131	0,9263	0,9124	0,1677	0,1360	1,5006	0,0317		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,0178	0,9263	0,9181	0,2142	0,1734	0,8852	0,0408		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0261	0,9263	0,9302	0,2679	0,2291	0,4210	0,0388		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0351	0,9263	0,9309	0,3089	0,2781	0,4966	0,0308		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0727	0,9263	0,9167	0,4371	0,4066	1,0364	0,0305		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,1199	0,9263	0,9284	0,4988	0,4847	0,2267	0,0141		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1708	0,9263	0,9420	0,5371	0,5278	1,6949	0,0093		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2770	0,9263	0,9209	0,5832	0,5707	0,5830	0,0125		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3791	0,9263	0,9231	0,6282	0,5961	0,3455	0,0321		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,4694	0,9263	0,9229	0,6462	0,6221	0,3671	0,0241		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5521	0,9263	0,9205	0,6851	0,6543	0,6261	0,0308		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6404	0,9263	0,9286	0,7148	0,7004	0,2483	0,0144		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6639	0,9263	0,9246	0,7355	0,7150	0,1835	0,0205		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,7097	0,9263	0,9273	0,7595	0,7462	0,1080	0,0133		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,7586	0,9263	0,9259	0,8025	0,7836	0,0432	0,0189		
0,79820,92630,92630,82420,81650,00000,00770,83860,92630,93010,84760,85210,41020,00450,88140,92630,92990,87900,89140,38860,01240,92670,92630,93410,92630,93370,84210,00741,00000,92630,94231,00001,72730,0000	0,7876	0,9263	0,9253	0,8191	0,8075	0,1080	0,0116		
0,83860,92630,93010,84760,85210,41020,00450,88140,92630,92990,87900,89140,38860,01240,92670,92630,93410,92630,93370,84210,00741,00000,92630,94231,00001,72730,0000	0,7982	0,9263	0,9263	0,8242	0,8165	0,0000	0,0077		
0,88140,92630,92990,87900,89140,38860,01240,92670,92630,93410,92630,93370,84210,00741,00000,92630,94231,00001,72730,0000	0,8386	0,9263	0,9301	0,8476	0,8521	0,4102	0,0045		
0,92670,92630,93410,92630,93370,84210,00741,00000,92630,94231,00001,00001,72730,0000	0,8814	0,9263	0,9299	0,8790	0,8914	0,3886	0,0124		
1,0000 0,9263 0,9423 1,0000 1,0000 1,7273 0,0000	0,9267	0,9263	0,9341	0,9263	0,9337	0,8421	0,0074		
	1,0000	0,9263	0,9423	1,0000	1,0000	1,7273	0,0000		

Tabela 16 – Teste de consistência dos dados de Dias et al. (2017)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	X	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
		(atm)	(atm)			P (%)	Y	médio	médio
0,0000 0,9997 0,9996 0,0000 0,0100 0,0000 0,325 0,003 0,0402 0,9997 0,9933 0,2981 0,2965 0,6402 0,0016 0,0514 0,9997 0,9959 0,3368 0,3383 0,3801 0,0015 0,0580 0,9997 0,9947 0,3932 0,3951 0,5002 0,0019 0,0721 0,9997 0,9947 0,3932 0,3951 0,5002 0,0019 0,0729 0,9997 1,0022 0,3868 0,3968 0,2501 0,0100 0,0729 0,9997 1,0017 0,4362 0,4395 0,5000 0,0033 0,1072 0,9997 1,0017 0,4362 0,4395 0,2001 0,0009 0,1207 0,9997 1,0017 0,4719 0,4711 0,0300 0,0003 0,1237 0,9997 1,0026 0,5025 0,2901 0,0027 0,1358 0,9997 1,0026 0,5025 0,29010 0,0027								P (%)	Y
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0000	0,9997	0,9996	0,0000	0,0000	0,0100	0,0000	0,325	0,003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0402	0,9997	0,9933	0,2981	0,2965	0,6402	0,0016		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0514	0,9997	0,9959	0,3368	0,3383	0,3801	0,0015		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0580	0,9997	0,9984	0,3564	0,3588	0,1300	0,0024		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0721	0,9997	0,9947	0,3932	0,3951	0,5002	0,0019		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0729	0,9997	1,0022	0,3868	0,3968	0,2501	0,0100		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0959	0,9997	1,0002	0,4362	0,4395	0,0500	0,0033		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,1072	0,9997	1,0017	0,4546	0,4555	0,2001	0,0009		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,1201	0,9997	0,9994	0,4719	0,4711	0,0300	0,0008		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,1237	0,9997	1,0007	0,4725	0,4750	0,1000	0,0025		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,1297	0,9997	1,0019	0,4808	0,4811	0,2201	0,0003		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,1399	0,9997	1,0025	0,4909	0,4905	0,2801	0,0004		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,1586	0,9997	1,0026	0,5025	0,5052	0,2901	0,0027		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1935	0,9997	1,0071	0,5176	0,5266	0,7402	0,0090		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1967	0,9997	1,0074	0,5165	0,5283	0,7702	0,0118		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2363	0,9997	0,9997	0,5385	0,5466	0,0000	0,0081		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2916	0,9997	0,9980	0,5690	0,5677	0,1701	0,0013		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3507	0,9997	0,9950	0,5913	0,5887	0,4701	0,0026		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3812	0,9997	0,9947	0,6013	0,5999	0,5002	0,0014		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,4157	0,9997	0,9949	0,6164	0,6131	0,4801	0,0033		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,4819	0,9997	0,9960	0,6398	0,6407	0,3701	0,0009		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5189	0,9997	0,9962	0,6578	0,6577	0,3501	0,0001		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5205	0,9997	0,9970	0,6561	0,6584	0,2701	0,0023		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6382	0,9997	0,9985	0,7245	0,7201	0,1200	0,0044		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,7453	0,9997	1,0018	0,7816	0,7859	0,2101	0,0043		
0,84360,99971,00460,85250,85550,49010,00300,93700,99971,00490,93410,93430,52020,00020,93720,99971,00570,93390,93450,60020,00061,00000,99971,00061,00001,00000,09000,0000	0,8396	0,9997	1,0050	0,8491	0,8525	0,5302	0,0034		
0,93700,99971,00490,93410,93430,52020,00020,93720,99971,00570,93390,93450,60020,00061,00000,99971,00061,00001,00000,09000,0000	0,8436	0,9997	1,0046	0,8525	0,8555	0,4901	0,0030		
0,93720,99971,00570,93390,93450,60020,00061,00000,99971,00061,00001,00000,09000,0000	0,9370	0,9997	1,0049	0,9341	0,9343	0,5202	0,0002		
1,0000 0,9997 1,0006 1,0000 1,0000 0,0900 0,0000	0,9372	0,9997	1,0057	0,9339	0,9345	0,6002	0,0006		
	1,0000	0,9997	1,0006	1,0000	1,0000	0,0900	0,0000		

Tabela 17 – Teste de consistência dos dados de Iwakabe e Kosuge (2001)
Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,288	0,005
0,0180	1,0000	0,9936	0,1790	0,1574	0,6400	0,0216		
0,0540	1,0000	1,0087	0,3375	0,3276	0,8700	0,0099		
0,1240	1,0000	0,9955	0,4700	0,4664	0,4500	0,0036		
0,1760	1,0000	0,9959	0,5140	0,5144	0,4100	0,0004		
0,2300	1,0000	1,0012	0,5420	0,5462	0,1200	0,0042		
0,2880	1,0000	1,0031	0,5700	0,5716	0,3100	0,0016		
0,3850	1,0000	1,0023	0,6120	0,6078	0,2300	0,0042		
0,4400	1,0000	1,0010	0,6330	0,6286	0,1000	0,0044		
0,5140	1,0000	0,9961	0,6570	0,6593	0,3900	0,0023		
0,6730	1,0000	1,0003	0,7350	0,7401	0,0300	0,0051		
0,8400	1,0000	0,9999	0,8500	0,8529	0,0100	0,0029		
1,0000	1,0000	1,0018	1,0000	1,0000	0,1800	0,0000		

Tabela 18 – Teste de consistência dos dados de Jones, Schoenborn e Colburn (1943)

	1		1					
Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,185	0,005
0,0180	1,0000	0,9942	0,1800	0,1720	0,5800	0,0080		
0,0790	1,0000	1,0012	0,4180	0,4105	0,1200	0,0075		
0,0900	1,0000	0,9995	0,4410	0,4313	0,0500	0,0097		
0,1470	1,0000	1,0028	0,5100	0,4997	0,2800	0,0103		
0,2440	1,0000	1,0037	0,5670	0,5544	0,3700	0,0126		
0,3110	1,0000	1,0008	0,5890	0,5791	0,0800	0,0099		
0,3530	1,0000	0,9990	0,6040	0,5937	0,1000	0,0103		
0,4250	1,0000	0,9971	0,6270	0,6198	0,2900	0,0072		
0,4880	1,0000	0,9972	0,6520	0,6452	0,2800	0,0068		
0,5700	1,0000	0,9977	0,6880	0,6830	0,2300	0,0050		
0,6160	1,0000	0,9981	0,7130	0,7067	0,1900	0,0063		
0,6700	1,0000	0,9987	0,7360	0,7369	0,1300	0,0009		
0,7110	1,0000	0,9993	0,7600	0,7615	0,0700	0,0015		
0,8020	1,0000	1,0014	0,8190	0,8222	0,1400	0,0032		
0,8350	1,0000	1,0015	0,8440	0,8466	0,1500	0,0026		
0,8690	1,0000	1,0020	0,8730	0,8733	0,2000	0,0003		
0,9010	1,0000	1,0021	0,9000	0,9003	0,2100	0,0003		
0,9140	1,0000	1,0019	0,9120	0,9119	0,1900	0,0001		
0,9220	1,0000	1,0020	0,9200	0,9191	0,2000	0,0009		
0,9400	1,0000	1,0019	0,9370	0,9361	0,1900	0,0009		
0,9720	1,0000	1,0013	0,9690	0,9686	0,1300	0,0004		
1,0000	1,0000	1,0006	1,0000	1,0000	0,0600	0,0000		
							-	

Tabela 19 – Teste de consistência dos dados de Kamihama et al. (2012)

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,263	0,005
0,0051	1,0000	1,0039	0,0486	0,0561	0,3900	0,0075		
0,0069	1,0000	1,0014	0,0752	0,0739	0,1400	0,0013		
0,0162	1,0000	1,0067	0,1442	0,1527	0,6700	0,0085		
0,0316	1,0000	1,0027	0,2429	0,2482	0,2700	0,0053		
0,0823	1,0000	0,9912	0,3985	0,4129	0,8800	0,0144		
0,1065	1,0000	0,9947	0,4513	0,4540	0,5300	0,0027		
0,1368	1,0000	1,0014	0,4812	0,4898	0,1400	0,0086		
0,1450	1,0000	1,0011	0,4805	0,4975	0,1100	0,0170		
0,1770	1,0000	1,0068	0,5095	0,5220	0,6800	0,0125		
0,4034	1,0000	1,0000	0,6120	0,6121	0,0000	0,0001		
0,5733	1,0000	0,9981	0,6849	0,6812	0,1900	0,0037		
0,7152	1,0000	0,9992	0,7607	0,7610	0,0800	0,0003		
0,7715	1,0000	0,9995	0,7961	0,7992	0,0500	0,0031		
0,8160	1,0000	1,0000	0,8246	0,8322	0,0000	0,0076		
0,8180	1,0000	0,9998	0,8322	0,8338	0,0200	0,0016		
0,8386	1,0000	1,0003	0,8450	0,8500	0,0300	0,0050		
0,8780	1,0000	1,0009	0,8789	0,8827	0,0900	0,0038		
0,9167	1,0000	1,0010	0,9117	0,9170	0,1000	0,0053		
0,9910	1,0000	1,0044	0,9892	0,9904	0,4400	0,0012		
1,0000	1,0000	1,0071	1,0000	1,0000	0,7100	0,0000]	

Tabela 20 – Teste de consistência dos dados de Kojima, Ochi e Nakazawa (1968)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(atm)	(atm)			P (%)	Y	médio	médio
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								P (%)	Y
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,211	0,003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0500	1,0000	0,9978	0,3372	0,3327	0,2200	0,0045		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1000	1,0000	0,9983	0,4521	0,4475	0,1700	0,0046		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1500	1,0000	1,0011	0,5056	0,5026	0,1100	0,0030		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2000	1,0000	1,0043	0,5359	0,5348	0,4300	0,0011		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2500	1,0000	1,0039	0,5589	0,5572	0,3900	0,0017		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3000	1,0000	1,0015	0,5794	0,5754	0,1500	0,0040		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3500	1,0000	0,9990	0,5987	0,5925	0,1000	0,0062		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,4000	1,0000	0,9972	0,6177	0,6099	0,2800	0,0078		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,4500	1,0000	0,9962	0,6371	0,6286	0,3800	0,0085		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5000	1,0000	0,9971	0,6558	0,6491	0,2900	0,0067		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5500	1,0000	0,9979	0,6765	0,6717	0,2100	0,0048		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6000	1,0000	0,9991	0,6986	0,6966	0,0900	0,0020		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6500	1,0000	0,9994	0,7250	0,7238	0,0600	0,0012		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,7000	1,0000	0,9995	0,7550	0,7535	0,0500	0,0015		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,7500	1,0000	1,0005	0,7840	0,7857	0,0500	0,0017		
0,85001,00001,00290,85910,85860,29000,00050,90001,00001,00360,89590,90030,36000,00440,95001,00001,00380,94740,94690,38000,00051,00001,00211,00001,00000,21000,0000	0,8000	1,0000	1,0020	0,8167	0,8206	0,2000	0,0039		
0,90001,00001,00360,89590,90030,36000,00440,95001,00001,00380,94740,94690,38000,00051,00001,00001,00211,00001,00000,21000,0000	0,8500	1,0000	1,0029	0,8591	0,8586	0,2900	0,0005		
0,95001,00001,00380,94740,94690,38000,00051,00001,00001,00211,00001,00000,21000,0000	0,9000	1,0000	1,0036	0,8959	0,9003	0,3600	0,0044		
1,0000 1,0000 1,0021 1,0000 1,0000 0,2100 0,0000	0,9500	1,0000	1,0038	0,9474	0,9469	0,3800	0,0005		
	1,0000	1,0000	1,0021	1,0000	1,0000	0,2100	0,0000		

Tabela 21 – Teste de consistência dos dados de Kojima et al. (1968)

V	DEVD	DEST	VEVD	VECT	DESV	DESV	DESV	DESV
Λ	rear (otm)	(otm)	IEAF	IESI	DESV D(04)		DES V módio	DES V módio
	(atili)	(atili)			F (70)	1	P(%)	V
0,0000	0,9998	0,9997	0,0000	0,0000	0,0100	0,0000	0,238	0,007
0,0560	0,9998	0,9994	0,3660	0,3599	0,0400	0,0061		<u> </u>
0,0910	0,9998	0,9953	0,4480	0,4380	0,4501	0,0100		
0,1890	0,9998	1,0087	0,5390	0,5272	0,8902	0,0118		
0,2860	0,9998	1,0018	0,5820	0,5661	0,2000	0,0159		
0,3230	0,9998	0,9987	0,6000	0,5784	0,1100	0,0216		
0,3310	0,9998	0,9995	0,6050	0,5811	0,0300	0,0239		
0,4190	0,9998	0,9963	0,6270	0,6123	0,3501	0,0147		
0,5120	0,9998	0,9953	0,6660	0,6515	0,4501	0,0145		
0,6200	0,9998	0,9967	0,7120	0,7068	0,3101	0,0052		
0,7040	0,9998	0,9980	0,7590	0,7570	0,1800	0,0020		
0,7150	0,9998	0,9984	0,7640	0,7640	0,1400	0,0000		
0,7980	0,9998	0,9992	0,8180	0,8207	0,0600	0,0027		
0,8430	0,9998	1,0018	0,8510	0,8544	0,2000	0,0034		
0,8470	0,9998	1,0020	0,8540	0,8575	0,2200	0,0035		
0,8490	0,9998	1,0018	0,8560	0,8591	0,2000	0,0031		
0,8840	0,9998	1,0027	0,8860	0,8874	0,2901	0,0014		
0,9080	0,9998	1,0026	0,9070	0,9080	0,2801	0,0010		
0,9220	0,9998	1,0025	0,9200	0,9206	0,2701	0,0006		
1,0000	0,9998	1,0006	1,0000	1,0000	0,0800	0,0000		

Tabela 22 – Teste de consistência dos dados de Kurihara et al. (1993)

v	DEVD	DEST	VEVD	VEST	DESV	DESV	DESV	DESV
Λ	(otm)	(otm)	ILAF	1001			mádia	mádic
	(atm)	(atm)			P(%)	ľ		medio
							P(%)	Y
0,0000	0,9997	0,9999	0,0000	0,0000	0,0200	0,0000	0,233	0,003
0,0150	0,9997	0,9972	0,1390	0,1390	0,2501	0,0000		
0,0350	0,9997	0,9950	0,2610	0,2581	0,4701	0,0029		
0,1000	0,9997	1,0049	0,4360	0,4372	0,5202	0,0012		
0,1830	0,9997	1,0015	0,5250	0,5216	0,1801	0,0034		
0,2920	0,9997	0,9991	0,5850	0,5739	0,0600	0,0111		
0,3940	0,9997	0,9987	0,6110	0,6107	0,1000	0,0003		
0,5010	0,9997	0,9993	0,6480	0,6525	0,0400	0,0045		
0,5430	0,9997	0,9981	0,6690	0,6711	0,1600	0,0021		
0,6310	0,9997	0,9930	0,7140	0,7152	0,6702	0,0012		
0,7490	0,9997	1,0008	0,7810	0,7863	0,1100	0,0053		
0,7940	0,9997	1,0055	0,8140	0,8174	0,5802	0,0034		
0,8480	0,9997	1,0011	0,8550	0,8583	0,1400	0,0033		
0,8990	0,9997	1,0006	0,8980	0,9008	0,0900	0,0028		
0,9490	0,9997	1,0017	0,9460	0,9470	0,2001	0,0010		
1,0000	0,9997	1,0010	1,0000	1,0000	0,1300	0,0000		

Tabela 23 – Teste de consistência dos dados de Lai, Lin e Tu (2014)

Tabela 24 – Teste de consistência dos dados de Lei et al. (2002)

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	1,0000	0,9929	0,0000	0,0000	0,7100	0,0000	1,556	0,009
0,0097	1,0000	1,0434	0,1035	0,0836	4,3400	0,0199		
0,0270	1,0000	1,0161	0,2248	0,1948	1,6100	0,0300		
0,0427	1,0000	0,9523	0,2967	0,2683	4,7700	0,0284		
0,0646	1,0000	0,9901	0,3612	0,3417	0,9900	0,0195		
0,1476	1,0000	1,0296	0,4870	0,4848	2,9600	0,0022		
0,2144	1,0000	1,0087	0,5475	0,5383	0,8700	0,0092		
0,3182	1,0000	0,9834	0,5810	0,5872	1,6600	0,0062		
0,4013	1,0000	0,9825	0,6137	0,6170	1,7500	0,0033		
0,5008	1,0000	1,0032	0,6485	0,6533	0,3200	0,0048		
0,5884	1,0000	1,0097	0,6915	0,6916	0,9700	0,0001		
0,6980	1,0000	0,9978	0,7520	0,7521	0,2200	0,0001		
0,7857	1,0000	1,0037	0,8049	0,8122	0,3700	0,0073		
0,8448	1,0000	0,9913	0,8515	0,8590	0,8700	0,0075		
0,9190	1,0000	1,0163	0,9158	0,9237	1,6300	0,0079		
1,0000	1,0000	1,0086	1,0000	1,0000	0,8600	0,0000		

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,00	1,0000	1,0052	0,0000	0,0000	0,5200	0,0000	2,306	0,009
0,02	1,0000	0,9815	0,1700	0,1687	1,8500	0,0013		
0,04	1,0000	1,0030	0,2700	0,2751	0,3000	0,0051		
0,07	1,0000	0,9839	0,4200	0,3760	1,6100	0,0440		
0,08	1,0000	0,9196	0,4300	0,4011	8,0400	0,0289		
0,09	1,0000	0,9377	0,4300	0,4215	6,2300	0,0085		
0,09	1,0000	0,9558	0,4400	0,4212	4,4200	0,0188		
0,11	1,0000	1,0510	0,4700	0,4537	5,1000	0,0163		
0,12	1,0000	1,0875	0,4700	0,4672	8,7500	0,0028		
0,11	1,0000	1,0510	0,4600	0,4537	5,1000	0,0063		
0,19	1,0000	1,0047	0,5400	0,5331	0,4700	0,0069		
0,31	1,0000	1,0093	0,5900	0,5861	0,9300	0,0039		
0,43	1,0000	0,9983	0,6300	0,6232	0,1700	0,0068		
0,43	1,0000	1,0021	0,6300	0,6231	0,2100	0,0069		
0,47	1,0000	0,9827	0,6300	0,6365	1,7300	0,0065		
0,51	1,0000	1,0059	0,6600	0,6506	0,5900	0,0094		
0,53	1,0000	1,0024	0,6700	0,6585	0,2400	0,0115		
0,56	1,0000	0,9743	0,6800	0,6714	2,5700	0,0086		
0,61	1,0000	0,9766	0,6900	0,6948	2,3400	0,0048		
0,65	1,0000	1,0118	0,7200	0,7157	1,1800	0,0043		
0,69	1,0000	1,0105	0,7400	0,7395	1,0500	0,0005		
0,69	1,0000	0,9909	0,7400	0,7397	0,9100	0,0003		
0,90	1,0000	0,9945	0,9000	0,9048	0,5500	0,0048		
1,0000	1,0000	1,0048	1,0000	1,0000	0,4800	0,0000		

Tabela 25 – Teste de consistência dos dados de Maciel (2012)

Tabela 26 - Teste de consistência dos dados de Navarro-Espinosa, Cardona e López

(2010)

X	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,7632	0,7629	0,0000	0,0000	0,0393	0,0000	0,264	0,019
0,2810	0,7632	0,7647	0,5410	0,5811	0,1965	0,0401		
0,3560	0,7632	0,7619	0,5790	0,6161	0,1703	0,0371		
0,4740	0,7632	0,7591	0,6290	0,6624	0,5372	0,0334		
0,6200	0,7632	0,7683	0,7050	0,7230	0,6682	0,0180		
0,7630	0,7632	0,7620	0,7980	0,8008	0,1572	0,0028		
1,0000	0,7632	0,7638	1,0000	1,0000	0,0786	0,0000		

\mathbf{X}^{1}	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,335	0,007
0,0150	1,0000	0,9855	0,1425	0,1294	1,4500	0,0131		
0,0439	1,0000	1,0106	0,2901	0,2823	1,0600	0,0078		
0,1863	1,0000	0,9941	0,5171	0,5222	0,5900	0,0051		
0,2610	1,0000	1,0010	0,5589	0,5650	0,1000	0,0061		
0,3425	1,0000	1,0034	0,5900	0,5989	0,3400	0,0089		
0,4025	1,0000	1,0008	0,6085	0,6216	0,0800	0,0131		
0,4925	1,0000	1,0007	0,6454	0,6567	0,0700	0,0113		
0,5825	1,0000	0,9984	0,6902	0,6962	0,1600	0,0060		
0,6421	1,0000	0,9981	0,7160	0,7257	0,1900	0,0097		
0,7394	1,0000	0,9997	0,7753	0,7812	0,0300	0,0059		
0,8950	1,0000	1,0018	0,8950	0,8952	0,1800	0,0002		
1,0000	1,0000	1,0010	1,0000	1,0000	0,1000	0,0000		

Tabela 27 – Teste de consistência dos dados de Paul (1976)

 1 Foram removidos os pontos x=0,0641 e x=0,1051, pois apresentavam elevados desvios em pressão.

X	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)		1201	P (%)	Y	médio	médio
	. ,						P (%)	Y
0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,591	0,006
0,0028	1,0000	1,0043	0,0320	0,0312	0,4300	0,0008		
0,0118	1,0000	1,0014	0,1130	0,1156	0,1400	0,0026		
0,0137	1,0000	0,9850	0,1570	0,1310	1,5000	0,0260		
0,0144	1,0000	0,9905	0,1350	0,1364	0,9500	0,0014		
0,0176	1,0000	1,0006	0,1560	0,1598	0,0600	0,0038		
0,0222	1,0000	1,0045	0,1860	0,1904	0,4500	0,0044		
0,0246	1,0000	0,9846	0,2120	0,2053	1,5400	0,0067		
0,0302	1,0000	1,0082	0,2310	0,2361	0,8200	0,0051		
0,0331	1,0000	1,0031	0,2480	0,2508	0,3100	0,0028		
0,0519	1,0000	1,0056	0,3180	0,3266	0,5600	0,0086		
0,0530	1,0000	1,0101	0,3140	0,3301	1,0100	0,0161		
0,0625	1,0000	1,0052	0,3390	0,3586	0,5200	0,0196		
0,0673	1,0000	0,9846	0,3700	0,3716	1,5400	0,0016		
0,0715	1,0000	1,0050	0,3620	0,3815	0,5000	0,0195		
0,0871	1,0000	0,9958	0,4060	0,4143	0,4200	0,0083		
0,1260	1,0000	1,0035	0,4680	0,4701	0,3500	0,0021		
0,1430	1,0000	0,9931	0,4870	0,4875	0,6900	0,0005		
0,1720	1,0000	1,0055	0,5050	0,5107	0,5500	0,0057		
0,2000	1,0000	1,0060	0,5300	0,5284	0,6000	0,0016		
0,2100	1,0000	0,9979	0,5270	0,5340	0,2100	0,0070		
0,3000	1,0000	1,0190	0,5520	0,5734	1,9000	0,0214		
0,2840	1,0000	1,0004	0,5670	0,5674	0,0400	0,0004		
0,3000	1,0000	0,9847	0,5860	0,5739	1,5300	0,0121		
0,3240	1,0000	0,9982	0,5860	0,5829	0,1800	0,0031		
0,3450	1,0000	0,9949	0,5910	0,5909	0,5100	0,0001		
0,4050	1,0000	1,0049	0,6140	0,6137	0,4900	0,0003		
0,4300	1,0000	0,9979	0,6260	0,6238	0,2100	0,0022		
0,4490	1,0000	0,9926	0,6330	0,6317	0,7400	0,0013		
0,5060	1,0000	1,0026	0,6610	0,6563	0,2600	0,0047		
0,5450	1,0000	0,9948	0,6730	0,6746	0,5200	0,0016		
0,6630	1,0000	0,9974	0,7330	0,7368	0,2600	0,0038		
0,7350	1,0000	0,9998	0,7760	0,7803	0,0200	0,0043		
0,8040	1,0000	1,0056	0,8150	0,8265	0,5600	0,0115		
0,9170	1,0000	1,0078	0,9060	0,9159	0,7800	0,0099		
1,0000	1,0000	1,0010	1,0000	1,0000	0,1000	0,0000		

Tabela 28 – Teste de consistência dos dados de Rieder e Thompson (1949)

Tabela 29 – Teste de consistência dos dados de Rius, Otero e Macarron (1959) a 708,19mmHg

	n		1	n		1		
Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,9318	0,9317	0,0000	0,0000	0,0107	0,0000	0,422	0,003
0,0080	0,9318	0,9350	0,0880	0,0839	0,3434	0,0041		
0,0180	0,9318	0,9416	0,1650	0,1650	1,0517	0,0000		
0,0260	0,9318	0,9257	0,2320	0,2166	0,6546	0,0154		
0,0280	0,9318	0,9307	0,2290	0,2279	0,1181	0,0011		
0,0700	0,9318	0,9273	0,3900	0,3838	0,4829	0,0062		
0,0860	0,9318	0,9419	0,4190	0,4182	1,0839	0,0008		
0,1050	0,9318	0,9256	0,4540	0,4501	0,6654	0,0039		
0,1200	0,9318	0,9296	0,4710	0,4699	0,2361	0,0011		
0,2910	0,9318	0,9319	0,5720	0,5737	0,0107	0,0017		
0,3610	0,9318	0,9376	0,5970	0,5977	0,6225	0,0007		
0,4070	0,9318	0,9296	0,6180	0,6139	0,2361	0,0041		
0,5610	0,9318	0,9298	0,6820	0,6772	0,2146	0,0048		
1,0000	0,9318	0,9334	1,0000	1,0000	0,1717	0,0000		

Tabela 30 – Teste de consistência dos dados de Rius, Otero e Macarron (1959) a 708,60mmHg

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,312	0,003
0,0080	1,0000	0,9999	0,0880	0,0852	0,0100	0,0028		
0,0180	1,0000	1,0054	0,1650	0,1672	0,5400	0,0022		
0,0260	1,0000	0,9933	0,2320	0,2189	0,6700	0,0131		
0,0280	1,0000	0,9988	0,2290	0,2303	0,1200	0,0013		
0,0700	1,0000	0,9970	0,3900	0,3851	0,3000	0,0049		
0,0860	1,0000	1,0123	0,4190	0,4189	1,2300	0,0001		
0,1050	1,0000	0,9946	0,4540	0,4502	0,5400	0,0038		
0,1200	1,0000	0,9986	0,4710	0,4694	0,1400	0,0016		
0,2910	1,0000	0,9976	0,5720	0,5701	0,2400	0,0019		
0,3610	1,0000	1,0034	0,5970	0,5941	0,3400	0,0029		
0,4070	1,0000	0,9988	0,6180	0,6104	0,1200	0,0076		
0,5610	1,0000	0,9999	0,6820	0,6754	0,0100	0,0066		
1,0000	1,0000	1,0010	1,0000	1,0000	0,1000	0,0000		

			-	-	-	-		
X	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,9803	0,9801	0,0000	0,0000	0,0204	0,0000	0,906	0,010
0,0080	0,9803	0,9708	0,1230	0,0912	0,9691	0,0318		
0,0130	0,9803	0,9710	0,1620	0,1370	0,9487	0,0250		
0,0170	0,9803	0,9652	0,1800	0,1688	1,5403	0,0112		
0,0390	0,9803	0,9966	0,2920	0,2923	1,6628	0,0003		
0,1340	0,9803	0,9777	0,4930	0,4775	0,2652	0,0155		
0,2610	0,9803	0,9982	0,5540	0,5474	1,8260	0,0066		
0,3680	0,9803	0,9785	0,5940	0,5916	0,1836	0,0024		
0,4070	0,9803	0,9633	0,6170	0,6092	1,7342	0,0078		
0,5830	0,9803	0,9705	0,6900	0,6993	0,9997	0,0093		
0,6680	0,9803	0,9785	0,7350	0,7480	0,1836	0,0130		
0,8030	0,9803	0,9923	0,8150	0,8304	1,2241	0,0154		
0,9140	0,9803	0,9907	0,9120	0,9107	1,0609	0,0013		
1,0000	0,9803	0,9810	1,0000	1,0000	0,0714	0,0000		

Tabela 31 – Teste de consistência dos dados de Svoboda, Hynek e Pick (1968)

X	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
_							P (%)	Y
0,0000	0,9997	0,9996	0,0000	0,0000	0,0100	0,0000	0,406	0,0109
0,0006	0,9997	1,0004	0,0233	0,0073	0,0700	0,0160		
0,0015	0,9997	1,0033	0,0262	0,0181	0,3601	0,0081		
0,0033	0,9997	1,0072	0,0442	0,0386	0,7502	0,0056		
0,0041	0,9997	0,9993	0,0553	0,0474	0,0400	0,0079		
0,0058	0,9997	1,0017	0,0715	0,0653	0,2001	0,0062		
0,0077	0,9997	1,0029	0,0834	0,0841	0,3201	0,0007		
0,0121	0,9997	1,0016	0,1248	0,1239	0,1901	0,0009		
0,0210	0,9997	0,9986	0,1553	0,1906	0,1100	0,0353		
0,0367	0,9997	0,9852	0,2677	0,2768	1,4504	0,0091		
0,0622	0,9997	1,0028	0,3585	0,3658	0,3101	0,0073		
0,1152	0,9997	1,0042	0,4571	0,4609	0,4501	0,0038		
0,2007	0,9997	1,0069	0,5061	0,5255	0,7202	0,0194		
0,3005	0,9997	1,0026	0,5649	0,5649	0,2901	0,0000		
0,3809	0,9997	0,9932	0,5589	0,5929	0,6502	0,0340		
0,4664	0,9997	0,9938	0,6314	0,6267	0,5902	0,0047		
0,5549	0,9997	0,9940	0,6638	0,6688	0,5702	0,0050		
0,6615	0,9997	1,0015	0,7057	0,7301	0,1801	0,0244		
0,8365	0,9997	1,0036	0,8200	0,8550	0,3901	0,0350		
0,8939	0,9997	1,0051	0,8927	0,9022	0,5402	0,0095		
0,9569	0,9997	1,0061	0,9524	0,9583	0,6402	0,0059		
1,0000	0,9997	1,0006	1,0000	1,0000	0,0900	0,0000		

Tabela 32 – Teste de consistência dos dados de Yang e Wang (2002)

\mathbf{X}^1	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	1,0000	0,9999	0,0000	0,0000	0,0100	0,0000	0,3264	0,0074
0,0450	1,0000	1,0009	0,2750	0,2814	0,0900	0,0064		,
0,1000	1,0000	0,9937	0,4010	0,4225	0,6300	0,0215		
0,1760	1,0000	1,0066	0,5010	0,5109	0,6600	0,0099		
0,2500	1,0000	1,0048	0,5530	0,5577	0,4800	0,0047		
0,3390	1,0000	0,9948	0,5920	0,5973	0,5200	0,0053		
0,4220	1,0000	1,0013	0,6200	0,6297	0,1300	0,0097		
0,5250	1,0000	0,9934	0,6500	0,6720	0,6600	0,0220		
0,6000	1,0000	1,0000	0,6950	0,7064	0,0000	0,0114		
0,8100	1,0000	1,0013	0,8310	0,8298	0,1300	0,0012		
0,8660	1,0000	0,9995	0,8720	0,8720	0,0500	0,0000		
0,9190	1,0000	1,0040	0,9080	0,9172	0,4000	0,0092		
0,9660	1,0000	1,0071	0,9650	0,9628	0,7100	0,0022		
1,0000	1,0000	1,0010	1,0000	1,0000	0,1000	0,0000		

Tabela 33 – Teste de consistência dos dados de Zandijcke e Verhoeye (2007)

¹Foi removido o ponto x=0,7000, pois apresentava elevado desvio em pressão,

APÊNDICE F – TESTE DE CONSISTÊNCIA PARA DADOS ISOTÉRMICOS

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	4,7026	4,7026	0,0000	0,0000	0,0000	0,0000	0,821	0,007
0,0180	5,5118	5,4290	0,1590	0,1431	1,5022	0,0159		
0,0480	6,1921	6,2939	0,2880	0,2756	1,6440	0,0124		
0,0840	6,9408	6,9790	0,3670	0,3594	0,5504	0,0076		
0,1550	7,6895	7,6978	0,4380	0,4375	0,1079	0,0005		
0,1840	7,9618	7,8775	0,4580	0,4562	1,0588	0,0018		
0,2320	8,1658	8,0912	0,4900	0,4803	0,9136	0,0097		
0,2640	8,3013	8,2092	0,5030	0,4943	1,1095	0,0087		
0,3260	8,3013	8,3894	0,5280	0,5202	1,0613	0,0078		
0,3400	8,3697	8,4338	0,5350	0,5263	0,7659	0,0087		
0,4630	8,8461	8,7962	0,6000	0,5873	0,5641	0,0127		
0,5720	9,0500	9,0680	0,6580	0,6537	0,1989	0,0043		
0,6480	9,1868	9,2342	0,7040	0,7063	0,5160	0,0023		
0,7170	9,1868	9,3506	0,7490	0,7572	1,7830	0,0082		
0,7810	9,4579	9,4722	0,7970	0,8069	0,1512	0,0099		
0,8620	9,7303	9,5885	0,8620	0,8726	1,4573	0,0106		
0,9230	9,7303	9,6208	0,9190	0,9252	1,1254	0,0062		
0,9660	9,7303	9,6234	0,9610	0,9654	1,0986	0,0044		
1,0000	9,5895	9,5895	1,0000	1,0000	0,0000	0,0000		
Dantas Elal	امعد مام معما	a antan ()	021)					

Tabela 34 - Teste de consistência dos dados de Barr-David e Dodge (1959) a 150°C

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	15,4039	15,4039	0,0000	0,0000	0,0000	0,0000	0,695	0,005
0,0230	17,6921	17,6599	0,1340	0,1373	0,1820	0,0033		
0,0320	18,4408	18,3810	0,1750	0,1748	0,3243	0,0002		
0,0480	19,5974	19,4808	0,2190	0,2276	0,5950	0,0086		
0,0660	20,4132	20,4564	0,2620	0,2717	0,2116	0,0097		
0,0880	21,2987	21,4059	0,2990	0,3117	0,5033	0,0127		
0,1120	22,3868	22,2517	0,3370	0,3444	0,6035	0,0074		
0,1570	23,0671	23,2748	0,3810	0,3866	0,9004	0,0056		
0,2140	24,4289	24,2720	0,4240	0,4252	0,6423	0,0012		
0,2950	24,7684	25,1508	0,4660	0,4693	1,5439	0,0033		
0,3450	26,1974	25,8451	0,4950	0,4985	1,3448	0,0035		
0,3910	25,9250	26,1817	0,5280	0,5248	0,9902	0,0032		
0,4790	27,6947	27,2204	0,5790	0,5833	1,7126	0,0043		
0,4910	26,9461	27,1587	0,5860	0,5904	0,7890	0,0044		
0,5800	28,0355	28,0109	0,6410	0,6548	0,0877	0,0138		
0,6890	28,7158	28,8047	0,7190	0,7361	0,3096	0,0171		
0,8240	29,7355	29,5713	0,8280	0,8378	0,5522	0,0098		
0,9340	29,1237	29,4302	0,9290	0,9284	1,0524	0,0006		
1,0000	29,1105	29,1105	1,0000	1,0000	0,0000	0,0000		

Tabela 35 – Teste de consistência dos dados de Barr-David e Dodge (1959) a 200°C

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,1964	0,1964	0,0000	0,0000	0,0000	0,0000	0,157	0,002
0,0500	0,2880	0,2882	0,3483	0,3461	0,0694	0,0022		
0,1083	0,3472	0,3465	0,4782	0,4768	0,2016	0,0014		
0,1558	0,3732	0,3736	0,5283	0,5267	0,1072	0,0016		
0,2502	0,4022	0,4027	0,5810	0,5782	0,1243	0,0028		
0,3608	0,4201	0,4213	0,6188	0,6149	0,2856	0,0039		
0,4190	0,4300	0,4292	0,6372	0,6331	0,1860	0,0041		
0,4699	0,4357	0,4356	0,6541	0,6502	0,0230	0,0039		
0,5701	0,4488	0,4473	0,6918	0,6893	0,3342	0,0025		
0,5804	0,4478	0,4484	0,6961	0,6938	0,1340	0,0023		
0,6922	0,4599	0,4592	0,7498	0,7500	0,1522	0,0002		
0,7978	0,4658	0,4658	0,8150	0,8168	0,0000	0,0018		
0,9099	0,4674	0,4675	0,9054	0,9069	0,0214	0,0015		
0,9659	0,4622	0,4655	0,9615	0,9619	0,7140	0,0004		
1,0000	0,4633	0,4633	1,0000	1,0000	0,0000	0,0000		

Tabela 36 – Teste de consistência dos dados de Connemann et al. (1990)

Tabela 37 – Teste de consistência dos dados de Griswold, Haney e Klein (1943) a 150°	С
--	----------	---

V	DEVD	DEST	VEVD	VECT	DECU	DEGU	DEGV	DEGV
Λ	PEAP	PESI	IEAP	IESI	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	4,7026	4,7026	0,0000	0,0000	0,0000	0,0000	0,394	0,024
0,0730	7,2803	7,2490	0,3340	0,3768	0,4299	0,0428		
0,1380	8,0974	8,1310	0,4140	0,4603	0,4149	0,0463		
0,2650	8,8461	8,8636	0,4870	0,5276	0,1978	0,0406		
0,5140	9,8671	9,7713	0,6160	0,6413	0,9709	0,0253		
0,6390	10,0026	10,0771	0,6950	0,7082	0,7448	0,0132		
1,0000	9,5895	9,5895	1,0000	1,0000	0,0000	0,0000		

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	15,4039	15,4039	0,0000	0,0000	0,0000	0,0000	0,396	0,011
0,0580	20,4132	20,2588	0,2470	0,2608	0,7564	0,0138		
0,1140	22,5237	22,6719	0,3380	0,3583	0,6580	0,0203		
0,2370	25,1763	25,2113	0,4330	0,4533	0,1390	0,0203		
0,4970	28,2395	28,0373	0,5850	0,5976	0,7160	0,0126		
0,6330	28,8513	28,9970	0,6810	0,6880	0,5050	0,0070	1	
1,0000	29,1105	29,1105	1,0000	1,0000	0,0000	0,0000	1	

Tabela 38 – Teste de consistência dos dados de Griswold, Haney e Klein (1943) a 200°C

Tabela 39 - Teste de consistência dos dados de Herraiz, Shen e Coronas (1998)

	1	1	1	1	1		1	
Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,0728	0,0728	0,0000	0,0000	0,0000	0,0000	0,164	0,001
0,0953	0,1218	0,1220	0,4489	0,4484	0,1642	0,0005		
0,1901	0,1437	0,1431	0,5555	0,5555	0,4175	0,0000		
0,2795	0,1522	0,1526	0,6013	0,6005	0,2628	0,0008		
0,3699	0,1579	0,1583	0,6321	0,6301	0,2533	0,0020		
0,4711	0,1636	0,1632	0,6631	0,6604	0,2445	0,0027		
0,5608	0,1670	0,1670	0,6943	0,6918	0,0000	0,0025		
0,6599	0,1711	0,1707	0,7378	0,7364	0,2338	0,0014		
0,8037	0,1745	0,1748	0,8261	0,8263	0,1719	0,0002		
0,9141	0,1763	0,1764	0,9176	0,9178	0,0567	0,0002		
1,0000	0,1767	0,1767	1,0000	1,0000	0,0000	0,0000		
D / D 1	1 1	1 .	(0001)					

X	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio P (%)	médio Y
0,0000	0,1219	0,1219	0,0000	0,0000	0,0000	0,0000	0,154	0,002
0,0874	0,2007	0,2009	0,4341	0,4340	0,0997	0,0001		
0,0967	0,2063	0,2058	0,4549	0,4508	0,2424	0,0041		
0,1411	0,2250	0,2239	0,5120	0,5083	0,4889	0,0037		
0,1756	0,2335	0,2336	0,5372	0,5372	0,0428	0,0000		
0,2065	0,2402	0,2403	0,5562	0,5564	0,0416	0,0002		
0,2253	0,2425	0,2436	0,5636	0,5662	0,4536	0,0026		
0,2552	0,2470	0,2481	0,5761	0,5795	0,4453	0,0034		
0,2856	0,2510	0,2520	0,5890	0,5913	0,3984	0,0023		
0,3133	0,2548	0,2551	0,6008	0,6011	0,1177	0,0003		
0,3535	0,2592	0,2591	0,6133	0,6144	0,0386	0,0011		
0,3773	0,2613	0,2612	0,6226	0,6221	0,0383	0,0005		
0,3999	0,2634	0,2632	0,6311	0,6295	0,0759	0,0016		
0,4258	0,2655	0,2654	0,6397	0,6381	0,0377	0,0016		
0,4691	0,2693	0,2689	0,6563	0,6531	0,1485	0,0032		
0,4987	0,2717	0,2712	0,6660	0,6640	0,1840	0,0020		
0,5218	0,2734	0,2730	0,6741	0,6730	0,1463	0,0011		
0,5421	0,2752	0,2745	0,6840	0,6813	0,2544	0,0027		
0,5692	0,2773	0,2765	0,6971	0,6929	0,2885	0,0042		
0,5907	0,2785	0,2780	0,7050	0,7026	0,1795	0,0024		
0,6242	0,2808	0,2803	0,7205	0,7187	0,1781	0,0018		
0,6697	0,2834	0,2832	0,7434	0,7425	0,0706	0,0009		
0,6868	0,2845	0,2842	0,7523	0,7521	0,1054	0,0002		
0,7586	0,2881	0,2879	0,7940	0,7963	0,0694	0,0023		
0,7811	0,2887	0,2888	0,8081	0,8115	0,0346	0,0034		
0,8299	0,2902	0,2905	0,8429	0,8469	0,1034	0,0040		
0,8454	0,2910	0,2910	0,8555	0,8588	0,0000	0,0033		
0,8559	0,2909	0,2912	0,8639	0,8672	0,1031	0,0033		
0,8638	0,2909	0,2914	0,8699	0,8735	0,1719	0,0036		
0,8713	0,2911	0,2915	0,8769	0,8797	0,1374	0,0028		
0,8801	0,2913	0,2917	0,8849	0,8870	0,1373	0,0021		
0,8911	0,2915	0,2919	0,8948	0,8963	0,1372	0,0015		
0,9031	0,2914	0,2920	0,9065	0,9067	0,2059	0,0002		
0,9136	0,2917	0,2921	0,9151	0,9160	0,1371	0,0009		
0,9263	0,2918	0,2922	0,9273	0,9274	0,1371	0,0001		
0,9344	0,2917	0,2922	0,9337	0,9349	0,1714	0,0012		
0,9480	0,2917	0,2922	0,9470	0,9477	0,1714	0,0007		
0,9528	0,2916	0,2922	0,9512	0,9523	0,2058	0,0011		
1,0000	0,2917	0,2917	1,0000	1,0000	0,0000	0,0000		

Tabela 40 – Teste de consistência dos dados de Kurihara et al. (1995) a 50°C

X	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
					P (%)	Y	médio	médio
0.0000	0.1556	0.1556	0.0000	0.0000	0.0000	0.0000	P (%)	Y
0,0000	0,1556	0,1556	0,0000	0,0000	0,0000	0,0000	0,124	0,002
0,1161	0,2741	0,2731	0,4841	0,4779	0,3648	0,0062		
0,1445	0,2864	0,2862	0,5123	0,5096	0,0698	0,0027		
0,2338	0,3098	0,3113	0,5712	0,5679	0,4842	0,0033		
0,2506	0,3135	0,3144	0,5760	0,5753	0,2871	0,0007		
0,2938	0,3205	0,3213	0,5923	0,5919	0,2496	0,0004		
0,3306	0,3262	0,3262	0,6058	0,6044	0,0000	0,0014		
0,3551	0,3291	0,3291	0,6106	0,6124	0,0000	0,0018		
0,3777	0,3317	0,3317	0,6191	0,6196	0,0000	0,0005		
0,4123	0,3357	0,3354	0,6294	0,6309	0,0894	0,0015		
0,4470	0,3389	0,3390	0,6465	0,6426	0,0295	0,0039		
0,4598	0,3407	0,3403	0,6557	0,6471	0,1174	0,0086		
0,5127	0,3456	0,3455	0,6682	0,6668	0,0289	0,0014		
0,5273	0,3475	0,3469	0,6801	0,6726	0,1727	0,0075		
0,5541	0,3504	0,3494	0,6845	0,6838	0,2854	0,0007		
0,5626	0,3505	0,3501	0,6874	0,6875	0,1141	0,0001		
0,6194	0,3558	0,3551	0,7138	0,7141	0,1967	0,0003		
0,6841	0,3605	0,3601	0,7480	0,7487	0,1110	0,0007		
0,7174	0,3630	0,3624	0,7667	0,7685	0,1653	0,0018		
0,7276	0,3633	0,3630	0,7714	0,7748	0,0826	0,0034		
0,7558	0,3649	0,3647	0,7937	0,7931	0,0548	0,0006		
0,7979	0,3669	0,3668	0,8211	0,8223	0,0273	0,0012		
0,8165	0,3674	0,3676	0,8340	0,8360	0,0544	0,0020		
0,8334	0,3682	0,3683	0,8470	0,8489	0,0272	0,0019		
0,8436	0,3684	0,3686	0,8554	0,8569	0,0543	0,0015		
0,8502	0,3686	0,3688	0,8595	0,8621	0,0543	0,0026		
0,8616	0,3689	0,3691	0,8688	0,8713	0,0542	0,0025		
0,8714	0,3690	0,3694	0,8775	0,8794	0,1084	0,0019		
0,8798	0,3691	0,3695	0,8848	0,8864	0,1084	0,0016		
0,8854	0,3693	0,3697	0,8891	0,8912	0,1083	0,0021		
0,8925	0,3692	0,3698	0,8946	0,8973	0,1625	0,0027		
0,9002	0,3693	0,3699	0,9019	0,9040	0,1625	0,0021		
0,9131	0,3694	0,3701	0,9130	0,9154	0,1895	0,0024		
0,9342	0,3695	0,3702	0,9331	0,9348	0,1894	0,0017		
0,9566	0,3692	0,3702	0,9550	0,9561	0,2709	0,0011		
1,0000	0,3697	0,3697	1,0000	1,0000	0,0000	0,0000		

Tabela 41 – Teste de consistência dos dados de Kurihara et al. (1995) a 55°C

X	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
				G	P (%)	Y	médio	médio
0.0000	0.10.00	0.10.00	0.0000	0.0000	0.0000	0.0000	P (%)	Y
0,0000	0,1969	0,1969	0,0000	0,0000	0,0000	0,0000	0,192	0,005
0,0742	0,3123	0,3111	0,4130	0,4037	0,3842	0,0093		
0,1071	0,3409	0,3389	0,4742	0,4640	0,5867	0,0102		
0,1511	0,3636	0,3642	0,5196	0,5132	0,1650	0,0064		
0,1705	0,3712	0,3724	0,5326	0,5285	0,3233	0,0041		
0,1899	0,3789	0,3794	0,5473	0,5413	0,1320	0,0060		
0,2133	0,3849	0,3864	0,5587	0,5544	0,3897	0,0043		
0,2606	0,3965	0,3977	0,5814	0,5755	0,3026	0,0059		
0,3168	0,4069	0,4079	0,6006	0,5958	0,2458	0,0048		
0,3813	0,4161	0,4174	0,6209	0,6171	0,3124	0,0038		
0,4036	0,4208	0,4205	0,6316	0,6245	0,0713	0,0071		
0,4548	0,4280	0,4272	0,6502	0,6422	0,1869	0,0080		
0,4794	0,4316	0,4304	0,6688	0,6513	0,2780	0,0175		
0,4808	0,4318	0,4305	0,6682	0,6519	0,3011	0,0163		
0,5298	0,4376	0,4365	0,6788	0,6714	0,2514	0,0074		
0,5390	0,4387	0,4376	0,6887	0,6753	0,2507	0,0134		
0,5800	0,4435	0,4423	0,7070	0,6936	0,2706	0,0134		
0,6141	0,4469	0,4460	0,7175	0,7101	0,2014	0,0074		
0,6417	0,4496	0,4489	0,7333	0,7243	0,1557	0,0090		
0,6764	0,4528	0,4522	0,7468	0,7435	0,1325	0,0033		
0,7156	0,4561	0,4557	0,7674	0,7668	0,0877	0,0006		
0,7347	0,4573	0,4572	0,7834	0,7788	0,0219	0,0046		
0,7656	0,4594	0,4594	0,7968	0,7993	0,0000	0,0025		
0,8246	0,4626	0,4627	0,8395	0,8418	0,0216	0,0023		
0,8353	0,4630	0,4632	0,8477	0,8500	0,0432	0,0023		
0,8538	0,4638	0,4639	0,8616	0,8646	0,0216	0,0030		
0,8646	0,4637	0,4643	0,8715	0,8733	0,1294	0,0018		
0,8823	0,4641	0,4648	0,8860	0,8881	0,1508	0,0021		
0,8873	0,4643	0,4649	0,8908	0,8923	0,1292	0,0015		
0,8966	0,4643	0,4650	0,8987	0,9004	0,1508	0,0017		
0,9091	0,4644	0,4652	0,9095	0,9114	0,1723	0,0019		
0,9154	0,4644	0,4653	0,9151	0,9170	0,1938	0,0019		
0,9206	0,4644	0,4653	0,9195	0,9217	0,1938	0,0022		
0,9255	0,4643	0,4654	0,9242	0,9262	0,2369	0,0020		
0,9458	0,4641	0,4653	0,9444	0,9452	0,2586	0,0008		
0,9479	0,4642	0,4653	0,9467	0,9473	0,2370	0,0006		
0,9583	0,4638	0,4652	0,9562	0,9573	0,3019	0,0011		
1,0000	0,4644	0,4644	1,0000	1,0000	0,0000	0,0000		

Tabela 42 – Teste de consistência dos dados de Kurihara et al. (1995) a 60°C

X	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	1 2/11	1 201	1 2/11	G	P (%)	Y	médio	médio
				_			P (%)	Y
0,0000	0,3059	0,3059	0,0000	0,0000	0,0000	0,0000	0,192	0,008
0,0620	0,4770	0,4753	0,3740	0,3866	0,3564	0,0126		
0,0950	0,5250	0,5239	0,4390	0,4546	0,2095	0,0156		
0,1310	0,5579	0,5591	0,4820	0,4986	0,2151	0,0166		
0,1940	0,5933	0,5962	0,5240	0,5423	0,4888	0,0183		
0,2520	0,6158	0,6168	0,5520	0,5671	0,1624	0,0151		
0,3340	0,6388	0,6377	0,5830	0,5947	0,1722	0,0117		
0,4010	0,6547	0,6524	0,6110	0,6169	0,3513	0,0059		
0,5930	0,6920	0,6897	0,6910	0,6969	0,3324	0,0059		
0,6800	0,7030	0,7032	0,7390	0,7435	0,0284	0,0045		
0,7930	0,7141	0,7153	0,8160	0,8148	0,1680	0,0012		
0,8100	0,7146	0,7164	0,8260	0,8268	0,2519	0,0008		
0,9430	0,7164	0,7170	0,9410	0,9377	0,0838	0,0033		
0,9470	0,7164	0,7168	0,9450	0,9416	0,0558	0,0034		
1,0000	0,7108	0,7108	1,0000	1,0000	0,0000	0,0000		

Tabela 43 – Teste de consistência dos dados de Mertl (1972) a 69,9°C

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
				G	P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,1544	0,1544	0,0000	0,0000	0,0000	0,0000	0,266	0,007
0,0510	0,2281	0,2290	0,3360	0,3535	0,3946	0,0175		
0,0850	0,2603	0,2587	0,4280	0,4407	0,6147	0,0127		
0,1060	0,2730	0,2720	0,4610	0,4747	0,3663	0,0137		
0,1800	0,2991	0,3011	0,5240	0,5425	0,6687	0,0185		
0,2300	0,3109	0,3122	0,5550	0,5677	0,4181	0,0127		
0,3240	0,3266	0,3261	0,5890	0,6013	0,1531	0,0123		
0,4290	0,3395	0,3379	0,6280	0,6357	0,4713	0,0077		
0,5530	0,3513	0,3504	0,6800	0,6840	0,2562	0,0040		
0,6850	0,3617	0,3615	0,7460	0,7499	0,0553	0,0039		
0,7740	0,3663	0,3668	0,8010	0,8044	0,1365	0,0034		
0,8100	0,3676	0,3684	0,8290	0,8291	0,2176	0,0001		
0,8940	0,3692	0,3700	0,8980	0,8946	0,2167	0,0034		
0,9540	0,3691	0,3692	0,9520	0,9502	0,0271	0,0018		
1,0000	0,3671	0,3671	1,0000	1,0000	0,0000	0,0000		

Tabela 44 – Teste de consistência dos dados de Mertl (1972) a 54,9°C

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
				G	P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,1544	0,1544	0,0000	0,0000	0,0000	0,0000	0,266	0,007
0,0510	0,2281	0,2290	0,3360	0,3535	0,3946	0,0175		
0,0850	0,2603	0,2587	0,4280	0,4407	0,6147	0,0127		
0,1060	0,2730	0,2720	0,4610	0,4747	0,3663	0,0137		
0,1800	0,2991	0,3011	0,5240	0,5425	0,6687	0,0185		
0,2300	0,3109	0,3122	0,5550	0,5677	0,4181	0,0127		
0,3240	0,3266	0,3261	0,5890	0,6013	0,1531	0,0123		
0,4290	0,3395	0,3379	0,6280	0,6357	0,4713	0,0077		
0,5530	0,3513	0,3504	0,6800	0,6840	0,2562	0,0040		
0,6850	0,3617	0,3615	0,7460	0,7499	0,0553	0,0039		
0,7740	0,3663	0,3668	0,8010	0,8044	0,1365	0,0034		
0,8100	0,3676	0,3684	0,8290	0,8291	0,2176	0,0001		
0,8940	0,3692	0,3700	0,8980	0,8946	0,2167	0,0034		
0,9540	0,3691	0,3692	0,9520	0,9502	0,0271	0,0018		
1,0000	0,3671	0,3671	1,0000	1,0000	0,0000	0,0000		

Tabela 45 – Teste de consistência dos dados de Mertl (1972) a 39,9°C

Tabela 46 – Teste de consi	stência dos dados de	NIESEN et al.	(1986) a 150°C
----------------------------	----------------------	---------------	----------------

		-		-	-	-	-	
Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
					P (%)	Y	médio	médio
							P (%)	Y
0,0000	4,7026	4,7026	0,0000	0,0000	0,0000	0,0000	0,188	0,005
0,1050	7,3355	7,3158	0,4030	0,3955	0,2686	0,0075		
0,2210	8,1382	8,1849	0,4840	0,4868	0,5738	0,0028		
0,3600	8,7171	8,7249	0,5440	0,5512	0,0895	0,0072		
0,4020	8,8947	8,8678	0,5690	0,5713	0,3024	0,0023		
0,4400	9,0237	8,9898	0,5920	0,5904	0,3757	0,0016		
0,6060	9,4447	9,4500	0,6770	0,6851	0,0561	0,0081		
0,6840	9,6013	9,6149	0,7240	0,7350	0,1416	0,0110		
0,6910	9,6211	9,6285	0,7270	0,7396	0,0769	0,0126		
1,0000	9,5895	9,5895	1,0000	1,0000	0,0000	0,0000		

\mathbf{X}^{1}	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
					P (%)	Y	médio P (%)	médio Y
0,0000	15,4039	15,4039	0,0000	0,0000	0,0000	0,0000	0,367	0,008
0,0970	21,4276	21,2050	0,3050	0,3159	1,0388	0,0109		
0,1930	23,9592	24,1270	0,4060	0,4333	0,7004	0,0273		
0,4040	26,9474	27,1001	0,5360	0,5556	0,5667	0,0196		
0,5930	28,5526	28,5406	0,6460	0,6537	0,0420	0,0077		
0,6790	29,0566	28,9717	0,7090	0,7096	0,2922	0,0006		
0,6860	29,0842	28,9983	0,7130	0,7146	0,2953	0,0016		
1,0000	29,1105	29,1105	1,0000	1,0000	0,0000	0,0000		
Eante				•	•			

Tabela 47 – Teste de consistência dos dados de NIESEN et al. (1986) a 200°C

¹Ponto x=0,3800 removido por apresentar um elevado desvio em y,

Tabela 48 – Teste de consistência dos dados de Pemberton e Mash (1978) a 30°C

\mathbf{X}^1	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
					P (%)	Y	médio P (%)	médio Y
0,0000	0,0418	0,0418	0,0000	0,0000	0,0000	0,0000	0,404	0,003
0,0044	0,0436	0,0436	0,0412	0,0448	0,0000	0,0036		
0,0152	0,0474	0,0478	0,1280	0,1372	0,8439	0,0092		
0,0273	0,0514	0,0519	0,2043	0,2153	0,9728	0,0110		
0,0463	0,0571	0,0578	0,2975	0,3060	1,2259	0,0085		
0,0678	0,0630	0,0633	0,3753	0,3779	0,4762	0,0026		
0,1099	0,0723	0,0717	0,4743	0,4678	0,8299	0,0065		
0,1711	0,0808	0,0799	0,5479	0,5406	1,1139	0,0073		
0,2469	0,0861	0,0860	0,5907	0,5908	0,1161	0,0001		
0,3239	0,0897	0,0899	0,6194	0,6231	0,2230	0,0037		
0,3866	0,0918	0,0922	0,6406	0,6441	0,4357	0,0035		
0,4176	0,0928	0,0932	0,6508	0,6539	0,4310	0,0031		
0,5049	0,0954	0,0956	0,6797	0,6819	0,2096	0,0022		
0,5809	0,0974	0,0976	0,7087	0,7097	0,2053	0,0010		
0,6343	0,0987	0,0988	0,7329	0,7323	0,1013	0,0006		
0,7246	0,1007	0,1007	0,7810	0,7783	0,0000	0,0027		
0,8084	0,1021	0,1019	0,8337	0,8317	0,1959	0,0020		
0,8579	0,1026	0,1024	0,8705	0,8688	0,1949	0,0017		
0,8906	0,1029	0,1026	0,8979	0,8958	0,2915	0,0021		
0,8993	0,1030	0,1027	0,9056	0,9033	0,2913	0,0023		
0,9244	0,1031	0,1028	0,9284	0,9257	0,2910	0,0027		
0,9537	0,1032	0,1028	0,9556	0,9533	0,3876	0,0023		
1,0000	0,1026	0,1026	1,0000	1,0000	0,0000	0,0000		
Font	o. Flabor	ada pala	$\frac{1}{2}$	21)	•	•	1	

Fonte: Elaborado pelo autor (2021).

¹ Foram removidos os pontos x=0,9732 e x=0,9815 pois não representavam o comportamento azeótropo de forma adequada,

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
					P (%)	Y	médio	médio
0.0000	0.1010	0.1010	0.0000	0.0000	0.0000	0.0000	P (%)	Y
0,0000	0,1219	0,1219	0,0000	0,0000	0,0000	0,0000	0,206	0,002
0,0043	0,1275	0,1277	0,0478	0,0489	0,1569	0,0011		
0,0152	0,1406	0,1410	0,1450	0,1471	0,2845	0,0021		
0,0272	0,1535	0,1541	0,2259	0,2274	0,3909	0,0015		
0,0463	0,1715	0,1718	0,3182	0,3176	0,1749	0,0006		
0,0678	0,1884	0,1881	0,3893	0,3865	0,1592	0,0028		
0,1098	0,2124	0,2115	0,4738	0,4692	0,4237	0,0046		
0,1710	0,2328	0,2325	0,5355	0,5332	0,1289	0,0023		
0,2466	0,2463	0,2472	0,5753	0,5759	0,3654	0,0006		
0,3238	0,2559	0,2565	0,6044	0,6046	0,2345	0,0002		
0,3884	0,2622	0,2625	0,6270	0,6252	0,1144	0,0018		
0,4175	0,2648	0,2649	0,6370	0,6344	0,0378	0,0026		
0,5048	0,2720	0,2717	0,6681	0,6646	0,1103	0,0035		
0,5808	0,2776	0,2772	0,6989	0,6957	0,1441	0,0032		
0,6343	0,2812	0,2807	0,7239	0,7213	0,1778	0,0026		
0,7245	0,2863	0,2858	0,7735	0,7724	0,1746	0,0011		
0,7638	0,2879	0,2876	0,7981	0,7980	0,1042	0,0001		
0,8084	0,2896	0,2893	0,8286	0,8299	0,1036	0,0013		
0,8579	0,2908	0,2907	0,8664	0,8686	0,0344	0,0022		
0,8906	0,2913	0,2914	0,8942	0,8963	0,0343	0,0021		
0,8993	0,2914	0,2915	0,9019	0,9039	0,0343	0,0020		
0,9244	0,2914	0,2918	0,9250	0,9265	0,1373	0,0015		
0,9537	0,2914	0,2919	0,9531	0,9540	0,1716	0,0009		
0,9732	0,2877	0,2918	0,9724	0,9729	1,4251	0,0005		
0,9815	0,2912	0,2919	0,9808	0,9813	0,2404	0,0005		
1,0000	0,2918	0,2918	1,0000	1,0000	0,0000	0,0000		

Tabela 49 – Teste de consistência dos dados de Pemberton e Mash (1978) a 50°C

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
0.0000	0.2070	0.2070	0.0000	0.0000	0.0000	0.0000	P (%)	Y
0,0000	0,3079	0,3079	0,0000	0,0000	0,0000	0,0000	0,160	0,001
0,0043	0,3233	0,3233	0,0512	0,0514	0,0000	0,0002		
0,0152	0,3588	0,3587	0,1532	0,1530	0,0279	0,0002		
0,0271	0,3930	0,3927	0,2348	0,2339	0,0763	0,0009		
0,0462	0,4386	0,4378	0,3245	0,3229	0,1824	0,0016		
0,0676	0,4793	0,4780	0,3906	0,3891	0,2712	0,0015		
0,1097	0,5335	0,5333	0,4662	0,4666	0,0375	0,0004		
0,1709	0,5782	0,5804	0,5216	0,5246	0,3805	0,0030		
0,2467	0,6099	0,6124	0,5604	0,5634	0,4099	0,0030		
0,3237	0,6327	0,6333	0,5904	0,5909	0,0948	0,0005		
0,3883	0,6484	0,6476	0,6139	0,6122	0,1234	0,0017		
0,4173	0,6547	0,6536	0,6244	0,6222	0,1680	0,0022		
0,5047	0,6725	0,6708	0,6578	0,6554	0,2528	0,0024		
0,5807	0,6861	0,6845	0,6907	0,6895	0,2332	0,0012		
0,6342	0,6948	0,6933	0,7170	0,7169	0,2159	0,0001		
0,7244	0,7065	0,7058	0,7681	0,7700	0,0991	0,0019		
0,7637	0,7103	0,7100	0,7934	0,7960	0,0422	0,0026		
0,8084	0,7137	0,7139	0,8247	0,8278	0,0280	0,0031		
0,8578	0,7160	0,7168	0,8635	0,8662	0,1117	0,0027		
0,8906	0,7167	0,7178	0,8917	0,8937	0,1535	0,0020		
0,8993	0,7166	0,7180	0,8995	0,9012	0,1954	0,0017		
0,9244	0,7164	0,7181	0,9229	0,9239	0,2373	0,0010		
0,9537	0,7156	0,7176	0,9515	0,9518	0,2795	0,0003		
0,9732	0,7149	0,7168	0,9713	0,9714	0,2658	0,0001		
0,9815	0,7144	0,7164	0,9801	0,9801	0,2800	0,0000		
1,0000	0,7152	0,7152	1,0000	1,0000	0,0000	0,0000		

Tabela 50 – Teste de consistência dos dados de Pemberton e Mash (1978) a 70°C

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,6921	0,6921	0,0000	0,0000	0,0000	0,0000	0,184	0,002
0,0043	0,7276	0,7268	0,0520	0,0511	0,1100	0,0009		
0,0151	0,8084	0,8060	0,1539	0,1517	0,2969	0,0022		
0,0269	0,8845	0,8811	0,2337	0,2313	0,3844	0,0024		
0,0459	0,9836	0,9801	0,3200	0,3184	0,3558	0,0016		
0,0673	1,0688	1,0664	0,3823	0,3825	0,2246	0,0002		
0,1094	1,1798	1,1827	0,4530	0,4566	0,2458	0,0036		
0,1706	1,2713	1,2785	0,5058	0,5114	0,5663	0,0056		
0,2464	1,3387	1,3437	0,5449	0,5486	0,3735	0,0037		
0,3236	1,3884	1,3880	0,5763	0,5765	0,0288	0,0002		
0,3880	1,4230	1,4197	0,6010	0,5994	0,2319	0,0016		
0,4171	1,4372	1,4332	0,6123	0,6103	0,2783	0,0020		
0,5045	1,4764	1,4721	0,6480	0,6467	0,2912	0,0013		
0,5804	1,5062	1,5030	0,6830	0,6836	0,2125	0,0006		
0,6340	1,5245	1,5224	0,7106	0,7126	0,1378	0,0020		
0,7243	1,5495	1,5493	0,7639	0,7673	0,0129	0,0034		
0,7636	1,5575	1,5582	0,7901	0,7935	0,0449	0,0034		
0,8083	1,5642	1,5658	0,8224	0,8252	0,1023	0,0028		
0,8578	1,5684	1,5708	0,8618	0,8632	0,1530	0,0014		
0,8906	1,5691	1,5718	0,8903	0,8905	0,1721	0,0002		
0,8993	1,5688	1,5717	0,8981	0,8981	0,1849	0,0000		
0,9244	1,5679	1,5705	0,9216	0,9208	0,1658	0,0008		
0,9537	1,5653	1,5672	0,9506	0,9493	0,1214	0,0013		
0,9732	1,5628	1,5638	0,9708	0,9696	0,0640	0,0012		
0,9815	1,5616	1,5619	0,9797	0,9788	0,0192	0,0009		
1,0000	1,5569	1,5569	1,0000	1,0000	0,0000	0,0000		

Tabela 51 – Teste de consistência dos dados de Pemberton e Mash (1978) a 90°C

Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
	0.0070	0.0070	0.0000	0.0000	0.0000	0.0000	P (%)	Y
0,0000	0,3079	0,3079	0,0000	0,0000	0,0000	0,0000	0,160	0,001
0,0043	0,3233	0,3233	0,0512	0,0514	0,0000	0,0002		
0,0152	0,3588	0,3587	0,1532	0,1530	0,0279	0,0002		
0,0271	0,3930	0,3927	0,2348	0,2339	0,0763	0,0009		
0,0462	0,4386	0,4378	0,3245	0,3229	0,1824	0,0016		
0,0676	0,4793	0,4780	0,3906	0,3891	0,2712	0,0015		
0,1097	0,5335	0,5333	0,4662	0,4666	0,0375	0,0004		
0,1709	0,5782	0,5804	0,5216	0,5246	0,3805	0,0030		
0,2467	0,6099	0,6124	0,5604	0,5634	0,4099	0,0030		
0,3237	0,6327	0,6333	0,5904	0,5909	0,0948	0,0005		
0,3883	0,6484	0,6476	0,6139	0,6122	0,1234	0,0017		
0,4173	0,6547	0,6536	0,6244	0,6222	0,1680	0,0022		
0,5047	0,6725	0,6708	0,6578	0,6554	0,2528	0,0024		
0,5807	0,6861	0,6845	0,6907	0,6895	0,2332	0,0012		
0,6342	0,6948	0,6933	0,7170	0,7169	0,2159	0,0001		
0,7244	0,7065	0,7058	0,7681	0,7700	0,0991	0,0019		
0,7637	0,7103	0,7100	0,7934	0,7960	0,0422	0,0026		
0,8084	0,7137	0,7139	0,8247	0,8278	0,0280	0,0031		
0,8578	0,7160	0,7168	0,8635	0,8662	0,1117	0,0027		
0,8906	0,7167	0,7178	0,8917	0,8937	0,1535	0,0020		
0,8993	0,7166	0,7180	0,8995	0,9012	0,1954	0,0017		
0,9244	0,7164	0,7181	0,9229	0,9239	0,2373	0,0010		
0,9537	0,7156	0,7176	0,9515	0,9518	0,2795	0,0003		
0,9732	0,7149	0,7168	0,9713	0,9714	0,2658	0,0001		
0,9815	0,7144	0,7164	0,9801	0,9801	0,2800	0,0000		
1,0000	0,7152	0,7152	1,0000	1,0000	0,0000	0,0000		

Tabela 52 – Teste de consistência dos dados de Phutela, Kooner e Fenby (1979)

							DESV	DESV
Х	PEXP	PEST	YEXP	YEST	DESV	DESV	médio	médio
	(atm)	(atm)			P (%)	Y	P (%)	Y
0,0000	0,0732	0,0732	0,0000	0,0000	0,0000	0,0000	0,369	0,009
0,0050	0,0772	0,0771	0,0360	0,0561	0,1295	0,0201		
0,0070	0,0797	0,0787	0,0690	0,0763	1,2547	0,0073		
0,0100	0,0816	0,0809	0,0960	0,1046	0,8578	0,0086		
0,0140	0,0843	0,0839	0,1330	0,1388	0,4745	0,0058		
0,0200	0,0886	0,0880	0,1810	0,1840	0,6772	0,0030		
0,0260	0,0920	0,0919	0,2210	0,2230	0,1087	0,0020		
0,0350	0,0972	0,0974	0,2690	0,2724	0,2058	0,0034		
0,0500	0,1050	0,1056	0,3320	0,3370	0,5714	0,0050		
0,0750	0,1157	0,1169	0,4070	0,4124	1,0372	0,0054		
0,0850	0,1201	0,1207	0,4210	0,4351	0,4996	0,0141		
0,1080	0,1284	0,1282	0,4780	0,4766	0,1558	0,0014		
0,1110	0,1295	0,1291	0,4740	0,4811	0,3089	0,0071		
0,1360	0,1359	0,1355	0,5190	0,5132	0,2943	0,0058		
0,1580	0,1407	0,1401	0,5410	0,5349	0,4264	0,0061		
0,2010	0,1474	0,1468	0,5730	0,5659	0,4071	0,0071		
0,2560	0,1530	0,1527	0,5980	0,5928	0,1961	0,0052		
0,3190	0,1558	0,1572	0,6120	0,6147	0,8986	0,0027		
0,4180	0,1616	0,1623	0,6550	0,6429	0,4332	0,0121		
0,4480	0,1636	0,1636	0,6600	0,6516	0,0000	0,0084		
0,5180	0,1674	0,1666	0,6970	0,6737	0,4779	0,0233		
0,5830	0,1699	0,1692	0,7300	0,6982	0,4120	0,0318		
0,6820	0,1728	0,1727	0,7670	0,7457	0,0579	0,0213		
0,7480	0,1747	0,1746	0,8050	0,7855	0,0572	0,0195		
0,8280	0,1758	0,1763	0,8410	0,8435	0,2844	0,0025		
0,8920	0,1771	0,1772	0,8930	0,8973	0,0565	0,0043		
0,9430	0,1776	0,1775	0,9600	0,9443	0,0563	0,0157		
1,0000	0,1776	0,1776	1,0000	1,0000	0,0000	0,0000		

Tabela 53 – Teste de consistência dos dados de Vu et al. (2006)

X^1	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atm)	(atm)			P (%)	Y	médio	médio
							P (%)	Y
0,0000	0,0312	0,0312	0,0000	0,0000	0,0000	0,0000	0,427	0,0067
0,1150	0,0543	0,0544	0,4860	0,4788	0,1842	0,0072		
0,2050	0,0629	0,0623	0,5810	0,5688	0,9539	0,0122		
0,2910	0,0658	0,0663	0,6140	0,6124	0,7599	0,0016		
0,3270	0,0672	0,0675	0,6330	0,6259	0,4464	0,0071		
0,4240	0,0699	0,0700	0,6620	0,6572	0,1431	0,0048		
0,4950	0,0717	0,0715	0,6790	0,6797	0,2789	0,0007		
0,6500	0,0739	0,0743	0,7520	0,7401	0,5413	0,0119		
0,7010	0,0753	0,0751	0,7850	0,7655	0,2656	0,0195		
0,8380	0,0771	0,0766	0,8670	0,8531	0,6485	0,0139		
0,9730	0,0776	0,0769	0,9710	0,9720	0,9021	0,0010		
1,0000	0,0768	0,0768	1,0000	1,0000	0,0000	0,0000		

Tabela 54 – Teste de consistência dos dados de Yamamoto et al. (1995)

¹ Foi removido o ponto x=0,0630 pois apresentava um elevado desvio em pressão,

V	DEVD	DECT	VEVD	VECT	DEQU	DEGV	DEQU	DEGV
Х	PEXP	PEST	YEXP	YEST	DESV	DESV	DESV	DESV
	(atili)	(atili)			P (%)	I	P(%)	Y
0,0000	0,0728	0,0728	0,0000	0,0000	0,0000	0,0000	0,1155	0,0012
0,0425	0,0990	0,0999	0,2949	0,2984	0,9091	0,0035		
0,0782	0,1158	0,1156	0,4143	0,4102	0,1727	0,0041		
0,1677	0,1394	0,1385	0,5411	0,5347	0,6456	0,0064		
0,2344	0,1475	0,1474	0,5798	0,5774	0,0678	0,0024		
0,2754	0,1509	0,1512	0,5963	0,5958	0,1988	0,0005		
0,3462	0,1557	0,1561	0,6207	0,6213	0,2569	0,0006		
0,4504	0,1616	0,1617	0,6563	0,6549	0,0619	0,0014		
0,5118	0,1646	0,1646	0,6790	0,6762	0,0000	0,0028		
0,6187	0,1693	0,1692	0,7232	0,7203	0,0591	0,0029		
0,6367	0,1701	0,1699	0,7314	0,7288	0,1176	0,0026		
0,7272	0,1732	0,1731	0,7785	0,7779	0,0577	0,0006		
0,7672	0,1743	0,1743	0,8030	0,8031	0,0000	0,0001		
0,8442	0,1760	0,1759	0,8581	0,8584	0,0568	0,0003		
0,8663	0,1763	0,1762	0,8758	0,8761	0,0567	0,0003		
0,9123	0,1766	0,1767	0,9155	0,9153	0,0566	0,0002		
0,9232	0,1767	0,1768	0,9254	0,9251	0,0566	0,0003		
0,9284	0,1769	0,1768	0,9302	0,9299	0,0565	0,0003		
0,9356	0,1768	0,1768	0,9368	0,9366	0,0000	0,0002		
0,9437	0,1768	0,1768	0,9445	0,9442	0,0000	0,0003		
0,9462	0,1768	0,1768	0,9468	0,9465	0,0000	0,0003		
0,9649	0,1769	0,1768	0,9648	0,9646	0,0565	0,0002		
0,9685	0,1768	0,1768	0,9683	0,9681	0,0000	0,0002		
0,9828	0,1768	0,1768	0,9825	0,9824	0,0000	0,0001		
1,0000	0,1767	0,1767	1,0000	1,0000	0,0000	0,0000		
Eastar El	ale ana da a	ale autor	(2021)					

Tabela 55 – Teste de consistência dos dados de Zielkiewicz e Konitz (1991)

ANEXO A – PROPRIEDADES FÍSICO-QUÍMICAS DA ÁGUA

New Search Units

DIPPR

Const. Properties T. Dep Properties

Constant Properties For: WATER

CAS Name	WATER	Molecular Formula	H2O
IUPAC Name	WATER	Structural Formula	нон
CAS RN®*	7732-18-5	Release Date	1/01/1983
DIPPR ID	1921	Family	Other Inorganics
SMILES Formula	0	Sub Family	

* CAS Registry Number[®] is a Registered Trademark of the American Chemical Society

Synonyms:

STEAM DIHYDROGEN OXIDE ICE **REFRIGERANT 718** Value Units Data Type Uncertainty Source Type Note Property kg/kmol Molecular Weight 18.01528 647.096 < 0.2% Evaluated Critical Temperature κ Experimental Critical Pressure 22064000 Pa Experimental < 0.2% Evaluated m³/kmol Evaluated Critical Volume 0.0559472 Experimental < 0.2% Critical Compressibility 0.229 unitless Defined Staff Factor Acentric Factor 0.344861 unitless Defined Staff Normal Boiling Point 373.15 K Experimental < 0.2% Evaluated Melting Point 273.15 < 0.2% ĸ Experimental Evaluated Triple Point 273.16 K Experimental < 0.2% Evaluated Temperature < 0.2% 611.73 Pa Evaluated Triple Point Pressure Experimental Liquid Molar Volume 0.0180691 m³/kmol Experimental < 0.2% Evaluated 3559 Ideal Gas Enthalpy of -241818000 J/kmol Experimental < 0.2% Evaluated Formation Ideal Gas Gibbs Energy -228572000 J/kmol Defined < 0.2% Evaluated of Formation Ideal Gas Absolute 188825 J/kmol*K Experimental < 0.2% Evaluated Entropy Std Heat of Formation -285830000 J/kmol Experimental < 0.2% Evaluated Std Gibbs Energy of -237129000 J/kmol Defined < 0.2% Evaluated Formation < 0.2% Std Absoulte Entropy 69910 I/kmol*K Experimental Evaluated Heat of Fusion at 6001740 J/kmol Experimental < 0.2% Evaluated Melting Point Std Net Heat of J/kmol 36 Combustion Flash Point К 36 Lower Flammability Vol% in air 36 Limit Upper Flammability Vol% in air 36 Limit Auto Ignition к 36 Temperature Defined < 3% Staff Radius of Gyration 6.15E-11 m (J/m³)^{0.5} Solubility Parameter Defined Staff 47860 < 3% Dipole Moment 6.17E-30 Experimental < 1% Evaluated C*m Van Der Waals Volume 0.01237 m³/kmol Defined < 3% Staff 1388 m²/kmol Staff Van Der Waals Area 226000000 Defined < 5% 1389 Refractive Index 1.3325 unitless Experimental < 0.2% Evaluated Heat of Sublimation 50800000 Staff J/kmol Experimental < 10% 4138 Parachor 52.32 unitless Derived Staff < 1% 4074 Dielectric Constant 80.1 Unevaluated unitless Experimental 3315

Fonte: DIPPR (2021)

ANEXO B – PROPRIEDADES FÍSICO-QUÍMICAS DO ETANOL

DIPPR® Database Interface

New Search Units

Const. Properties T. Dep Properties

Constant Properties For: ETHANOL

CAS Name	ETHANOL	Molecular Formula	C2H6O
IUPAC Name	ETHANOL	Structural Formula	СНЗСН2ОН
CAS RN [®] *	64-17-5	Release Date	1/01/1983
DIPPR ID	1102	Family	N-ALCOHOLS
SMILES Formula	CCO	Sub Family	

* CAS Registry Number[®] is a Registered Trademark of the American Chemical Society

Synonyms:

SPIRITS OF WINE		ABSOLUTE ETHANOL	GRAIN ALCOHOL	MOLASSES ALCOHOL	FERMENTATION ALCOHOL	ETHYL HYDROXIDE	
		COLOGNE SPIRIT	ANHYDROL	METHYL CARBINOL	ΡΟΤΑΤΟ ΑΙ COHOI	EINTLHYDRAIE	
Property	Value	Units	Data Type	Uncertainty	Source Type	Note	
Molecular Weight	46.06844	kg/kmol					
Critical Temperature	514	К	Experimental	< 0.2%	Evaluated		
Critical Pressure	6137000	Pa	Experimental	< 1%	Evaluated		
Critical Volume	0.168	m ³ /kmol	Experimental	< 1%	Evaluated		
Critical Compressibility Factor	0.241	unitless	Defined	< 3%	Staff		
Acentric Factor	0.643558	unitless	Defined	< 1%	Staff		
Normal Boiling Point	351.44	К	Experimental	< 1%	Evaluated		
Melting Point	159.05	К	Experimental	< 1%	Evaluated		
Triple Point Temperature	159.05	К	Predicted	< 1%	Staff	49	
Triple Point Pressure	0.0004956	42 Pa	Predicted	< 100%	Staff		
Liquid Molar Volume	0.05862	m ³ /kmol	Experimental	< 1%	Staff	3559	
Ideal Gas Enthalpy of Formation	-23495000	0 J/kmol	Experimental	< 1%	Evaluated		
Ideal Gas Gibbs Energy of Formation	-16785000	0 J/kmol	Defined	< 1%	Staff	149	
Ideal Gas Absolute Entropy	280640	J/kmol*K	Experimental	< 1%	Evaluated		
Std Heat of Formation	-27698000	0 J/kmol	Experimental	< 1%	Unevaluated		
Std Gibbs Energy of Formation	-17386000	0 J/kmol	Defined	< 3%	Staff	2920	
Std Absoulte Entropy	159860	J/kmol*K	Experimental	< 3%	Unevaluated		
Heat of Fusion at Melting Point	4931000	J/kmol	Experimental	< 3%	Evaluated		
Std Net Heat of Combustion	-12350000	00 J/kmol	Experimental	< 1%	Evaluated		
Flash Point	286.15	К	Experimental	< 1%	Unevaluated	2147	
Lower Flammability Limit	3.3	Vol% in air	Experimental	< 3%	Unevaluated		
Lower Flammability Limit Temperature	284	К	Experimental		Unevaluated		
Upper Flammability Limit	19	Vol% in air	Experimental	< 5%	Unevaluated	6209	
Upper Flammability Limit Temperature	315	К	Experimental		Unevaluated	2821	
Auto Ignition Temperature	696	К	Experimental	Unknown	Unevaluated		
Radius of Gyration	2.259E-10	m	Defined	< 3%	Staff		
Solubility Parameter	26150	(J/m ³) ^{0.5}	Defined	< 3%	Staff		
Dipole Moment	5.64E-30	C*m	Experimental	Unknown	Evaluated	150	
Van Der Waals Volume	0.03194	m ³ /kmol	Defined	< 1%	Staff		
Van Der Waals Area	49300000	m ² /kmol	Defined	< 1%	Staff		
Refractive Index	1.35941	unitless	Experimental	< 0.2%	Evaluated		
Heat of Sublimation	51100000	J/kmol	Derived	< 10%	Staff	5141	
Parachor	127.38	unitless	Predicted	< 3%	Staff	4074	
Dielectric Constant	25.3	unitless	Experimental	< 0.2%	Unevaluated	3315	

Fonte: DIPPR (2021)