

Tese de Doutorado

Modelagem e Simulação da Solubilidade de Sais em Sistemas Aquosos com Monoetilenoglicol

José Augusto Furtado de Oliveira

Natal, junho de 2014

UFRN - CT - NUPEG - Campus Universitário - CEP 59.072-970 - Natal/RN - Brasil Fone/Fax: +55 (84) 3215-3773 - www.nupeg.ufrn.br - prhanp14@nupeg.ufrn.br

Modelagem e Simulação da Solubilidade de Sais em Sistemas Aquosos com Monoetilenoglicol

Tese de Doutorado apresentada ao Programa de Pós-Graduação em Engenharia Química (PPGEQ), da Universidade Federal do Rio Grande do Norte (UFRN), como parte dos requisitos necessários para a obtenção do título de Doutor em Engenharia Química, sob a orientação do Prof. Dr. Osvaldo Chiavone Filho e coorientação do Prof. Dr. Afonso Avelino Dantas Neto.

Natal/RN Junho/2014

UFRN / Biblioteca Central Zila Mamede Catalogação da Publicação na Fonte

Oliveira, José Augusto Furtado de.

Modelagem e Simulação da Solubilidade de Sais em Sistemas Aquosos com Monoetilenoglicol / José Augusto Furtado de Oliveira. - Natal, 2014. 176 p.; il.

Orientador: Prof. Dr. Osvaldo Chiavone Filho Coorientador: Prof. Dr. Afonso Avelino Dantas Neto

Tese de Doutorado - Universidade Federal do Rio Grande do Norte. Centro de Tecnologia. Departamento de Engenharia Química. Programa de Pós-Graduação em Engenharia Química.

Solubilidade - Tese. 2. Eletrólitos - Tese. 3. Monoetilenoglicol - Tese.
 Mistura de Solventes - Tese. 5. Processamento de Gás Natural - Tese.
 Python - Tese. I. Chiavone Filho, Osvaldo. II. Dantas Neto, Afonso Avelino.
 III. Universidade Federal do Rio Grande do Norte. IV. Título.

RN/UF/BCZM

CDU 544.77.051.7

Resumo

OLIVEIRA, José Augusto Furtado de - Modelagem e Simulação da Solubilidade de Sais em Sistemas Aquosos com Monoetilenoglicol. Tese de Doutorado, Universidade Federal do Rio Grande do Norte (UFRN), Programa de Pós-Graduação em Engenharia Química (PPGEQ), Natal/RN, Brasil. Área de Concentração: Engenharia de Processos. Orientador: Prof. Dr. Osvaldo Chiavone Filho Coorientador: Prof. Dr. Afonso Avelino Dantas Neto

O processamento primário do gás natural em plataformas como a do Campo de Mexilhão (PMXL-1) na Bacia de Santos, onde o Monoetileno glicol (MEG) tem sido utilizado como inibidor da formação de hidratos, apresenta problemas operacionais causados por incrustações de sal na unidade de recuperação do MEG. Pesquisa bibliográfica e análise dos dados de solubilidade de sal em misturas de solventes, a saber: água e MEG, revelam que estudos experimentais estão disponíveis para um número relativamente restrito das espécies iônicas presentes na água produzida, tais como NaCl e KCl. O objetivo deste trabalho foi desenvolver um método de cálculo para a solubilidade de um sal em misturas de solventes, neste caso, para o NaCl ou KCl em misturas aquosas contendo MEG. O método de cálculo estendeu o modelo de Pitzer, com a abordagem de Lorimer, para sistemas aquosos contendo um sal e um outro solvente (MEG). A linguagem Python no ambiente de desenvolvimento integrado (IDE) Eclipse foi usada na criação de aplicativos computacionais. Os resultados indicam a viabilidade da modelagem proposta para uma série de dados de solubilidade do sal (NaCl ou KCl) em misturas de água e MEG. Além disso, o aplicativo desenvolvido em Python tem demonstrado ser adequado para estimação de parâmetros e de simulação.

Palavras-chave: solubilidade. eletrólitos. monoetilenoglicol. mistura de solventes. processamento de gás natural. Python.

José Augusto Furtado de Oliveira

Modelagem e Simulação da Solubilidade de Sais em Sistemas Aquosos com Monoetilenoglicol

Tese de Doutorado apresentada ao Programa de Pós-Graduação em Engenharia Química (PPGEQ), da Universidade Federal do Rio Grande do Norte (UFRN), como parte dos requisitos necessários para a obtenção do título de Doutor em Engenharia Química.

Trabalho aprovado. Natal, 02 de Junho de 2014:

Prof. Dr. Osvaldo Chiavone Filho Orientador - UFRN

Prof. Dr. Edson Luiz Foletto Membro Externo - UFSM

Prof. Dr. Humberto Neves Maia de Oliveira Membro Interno - UFRN

Prof. Dr. Afonso Avelino Dantas Neto Coorientador - UFRN

Prof. Dr. André Luís Novais Mota Membro Externo - UFERSA

Dr^a. Dannielle Janainne da Silva Membro Interno - UFRN

Abstract

OLIVEIRA, José Augusto Furtado de - Modeling and Simulation of the Solubility of Salts in Aqueous Systems with Monoethyleneglycol. Doctoral Thesis, Federal University of Rio Grande do Norte (UFRN), Program of Postgraduation in Chemical Enginnering (PPGEQ), Natal/RN, Brazil. Concentration Area: Process Engineering. Supervisor: Prof. Dr. Osvaldo Chiavone Filho Joint Supervisor: Prof. Dr. Afonso Avelino Dantas Neto

Primary processing of natural gas platforms as Mexilhão Field (PMXL-1) in the Santos Basin, where monoethylene glycol (MEG) has been used to inhibit the formation of hydrates, present operational problems caused by salt scale in the recovery unit of MEG. Bibliographic search and data analysis of salt solubility in mixed solvents, namely water and MEG, indicate that experimental reports are available to a relatively restricted number of ionic species present in the produced water, such as NaCl and KCl. The aim of this study was to develop a method for calculating of salt solubilities in mixed solvent mixtures, in explantion, NaCl or KCl in aqueous mixtures of MEG. The method of calculating extend the Pitzer model, with the approach Lorimer, for aqueous systems containing a salt and another solvent (MEG). Python language in the Integrated Development Environment (IDE) Eclipse was used in the creation of the computational applications. The results indicate the feasibility of the proposed calculation method for a systematic series of salt (NaCl or KCl) solubility data in aqueous mixtures of MEG at various temperatures. Moreover, the application of the developed tool in Python has proven to be suitable for parameter estimation and simulation purposes.

Keywords: solubility. electrolytes. monoethyleneglycol. mixture of solvents. natural gas processing. Python.

Dedico este trabalho à minha esposa Marizete de Melo Oliveira e aos meus filhos, Jéssica de Melo Oliveira e Samuel Furtado de Oliveira, cuja simples existência faz tudo valer a pena!

Agradecimentos

Ao Senhor Jesus, em primeiro lugar, por TUDO! Sem Ele nada seria possível e realizável!

À minha esposa Marizete e meus filhos, Jéssica e Samuel, pelo AMOR!

À minha mãe, Eudézia, pela *EDUCAÇÃO* e *SUPORTE*, além do natural para uma mãe, que foram-me dados!

À Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) pelo APOIO FINANCEIRO.

Ao Centro de Pesquisas da Petrobras (CENPES) pela formação do grupo de *PESQUISA* do MEG no Laboratório de Fotoquímica e Equilíbrio de Fases (FOTEQ).

Ao Prof. Osvaldo Chiavone Filho pela ORIENTAÇÃO
eDEDICAÇÃOno desenvolvimento desta tese de doutorado.

Ao Prof. Afonso Avelino Dantas Neto pelo *APOIO* junto ao Programa de Recursos Humanos ANP-14 (PRH ANP-14).

Ao Prof. Eduardo Lins de Barros Neto pelo *INCENTIVO*.

Ao Prof. Humberto Neves Maia de Oliveira pelo "CAFEZINHO"!

Ao Prof. José Romualdo Dantas Vidal e Maria Carlenise Paiva de Alencar Moura pelo ESTÍMULO e AMIZADE.

À Maria José de Sousa Brunet pela *PACIÊNCIA* e *RAPIDEZ* nas diversas solicitações de vital importância deste projeto.

À Prof^a Márcia Maria Lima Duarte pela *COMPREENSÃO*.

À Eusamar Coelho de Lima e à José Medeiros dos Santos pela *AMIZADE* e pelo *APOIO ADMINISTRATIVO* rápido e eficiente.

Ao aluno de iniciação científica Bruno Dezan Samorini pela EFICIÊNCIA.

Ao pessoal do Núcleo de Ensino e Pesquisa em Petróleo e Gás (NUPEG) e do laboratório de Fotoquímica e Equilíbrio de Fases (FOTEQ) pelo *COLEGUISMO*.

E a todos que, embora não citados aqui, *COLABORARAM* de forma direta ou indireta para o desenvolvimento desta tese de doutorado. **MUITÍSSIMO OBRIGADO**!

"Tudo tem o seu tempo determinado, e há tempo para todo o propósito debaixo do céu. (Bíblia ACF, Eclesiastes 3:1)

•

Sumário

1	INTRODUCÃO	3
1.1	Atividade de Produção no Campo de Mexilhão	3
1.2	Formação de Hidratos em Tubulações	6
1.3	Estrutura dos Hidratos	7
1.4	Inibição da Formação de Hidratos	7
1.5	O Monoetilenoglicol	8
1.6	Uso do MEG como Inibidor da Formação de Hidratos	9
1.7	Processos de Recuperação e de Regeneração do MEG	9
2	REVISÃO BIBLIOGRÁFICA	19
2.1	Equilíbrio de Fases para Sistemas com Eletrólitos	19
2.1.1	Escalas de concentração	19
2.1.2	Potencial químico	20
2.1.3	Estado padrão	21
2.1.4	Coeficiente de atividade médio iônico e molalidade média iônica	22
2.1.5	Leis limitantes	23
2.1.6	Energia livre de Gibbs para soluções eletrolíticas reais	25
2.1.7	Fugacidade	26
2.2	Dados Experimentais de Solubilidade	27
2.3	Modelos Termodinâmicos para Eletrólitos	29
2.3.1	Logaritmos ideal e de excesso da solubilidade de um sal em mistura de solventes	29
2.3.2	Equação de Setchenov	29
2.3.3	Modelo de Pitzer	30
2.4	Outros Modelos Termodinâmicos	31
2.5	Ferramentas Computacionais	33
3	METODOLOGIA	37
3.1	Estratégia para Abordagem do Trabalho	38
3.2	Seleção dos Sistemas	39
3.3	Dados Experimentais Utilizados	40
3.4	Sistema Internacional de Unidades	41
3.5	Molalidade e Fração Molar	41
3.5.1	Cálculo da molalidade do sal na mistura de solventes	41
3.5.2	Cálculo da fração molar de MEG livre de sal na mistura de solventes	41
3.6	Constantes Dielétricas	42
3.6.1	Cálculo das constantes dielétricas dos solventes puros	42

3.6.2	Cálculo da constante dielétrica da mistura de solventes	42
3.7	Densidades Absolutas	42
3.7.1	Cálculo das densidades absolutas dos solventes puros	42
3.7.2	Cálculo das densidades absolutas da mistura de solventes	42
3.8	Coeficiente de Atividade	43
3.8.1	Cálculo do coeficiente de atividade do sal pelo <i>Modelo de Pitzer</i>	43
3.8.2	Cálculo do coeficiente de atividade do sal em MEG	43
3.8.3	Constante de Debye-Hückel	44
3.8.3.1	Cálculo da constante de Debye-Hückel para a água	44
3.8.3.2	Cálculo da constante de Debye-Hückel para o MEG	44
3.8.3.3	Cálculo da constante de Debye-Hückel para a mistura de solventes	44
3.8.4	Parâmetros do <i>Modelo de Pitzer</i> em água	44
3.8.4.1	Cálculo dos parâmetros do <i>Modelo de Pitzer</i> para o NaCl em água	44
3.8.4.2	Cálculo dos parâmetros do <i>Modelo de Pitzer</i> para o KCI em água	45
3.8.5	Parâmetros do <i>Modelo de Pitzer</i> em MEG e em mistura de solventes	46
3.8.5.1	Cálculo dos parâmetros do <i>Modelo de Pitzer</i> em MEG	46
3.8.5.2	Cálculo dos parâmetros do <i>Modelo de Pitzer</i> em mistura de solventes	46
3.9	Equações para Ajuste por Regressão de Dados Experimentais	47
3.9.1	Molalidade do sal em solvente simples como função da temperatura	47
3.9.2	Potencial químico padrão de excesso do sal em mistura de solventes como	
	função da fração molar do MEG livre de sal e da temperatura	47
3.10	Propriedades de Excesso Apresentadas em Lorimer (1993)	47
3.11	Constantes Físico-Químicas e Parâmetros Utilizados	48
3.12	Algoritmos	48
3.12.1	Sub-rotina Pitzer	49
3.12.2	Sub-rotina beta1_MEG	49
3.12.3	Sub-rotina prop_mix	50
3.12.4	Sub-rotina b_mix	51
3.12.5	Cálculo da molalidade do sal em solvente simples como função da temperatura	52
3.12.6	Cálculo do potencial padrão de excesso do sal na mistura de solventes	52
3.12.7	Cálculo das propriedades de mistura	52
3.13	Programa JAFOSSMS	53
4	RESULTADOS E DISCUSSÕES	61
4.1	Sistemas com NaCl	61
4.1.1	Sistemas com solvente simples	61
4.1.1.1	· Sistema H ₂ O+NaCl	61
4.1.1.2	- Sistema MEG+NaCl	63
4.1.2	Sistema com mistura água e MEG (H2O+MEG+NaCl)	65
4.1.2.1	Potencial químico padrão de excesso do NaCl na mistura água e MEG (Regressão)	65

B.1	Requisitos Gerais	121
	APÊNDICE B – REQUISITOS PARA EXECUTAR OS PROGRA- MAS DESENVOLVIDOS	121
	APÊNDICE A – ARTIGO SOBRE ELV	115
	Referências	103
5	CONCLUSÕES	101
4.4.2	Modelo UNIQUAC+DH	96
4.4.1	Modelo Ideal	95
4.4	Comparação do <i>Modelo JAFOSSMS</i> com outros modelos	95
4.3.2	Coeficiente de atividade do KCI em água	93
4.3.1	Coeficiente de atividade do NaCl em água	92
4.3	Validação do <i>Modelo de Pitzer</i> implementado	92
4.2.2.10	Logaritmo de excesso do coeficiente de atividade do KCI na mistura água e MEG (Predição)	91
4.2.2.9	Logaritmo de excesso do coeficiente de atividade do KCI na mistura água e MEG	90
4.2.2.8	Coeficiente de atividade do KCI na mistura água e MEG (Predição)	89
4.2.2.7	Coeficiente de atividade do KCI na mistura água e MEG	88
4.2.2.6	Logaritmo de excesso da molalidade do KCI na mistura água e MEG (Predição)	87
4.2.2.5	Logaritmo de excesso da molalidade do KCI na mistura água e MEG	86
4.2.2.4	Molalidade do KCI na mistura água e MEG (Predição)	85
4.2.2.3	Molalidade do KCI na mistura água e MEG	84
4.2.2.2	Potencial químico padrão de excesso do KCI na mistura água e MEG (Predição)	83
4.2.2.1	Potencial químico padrão de excesso do KCI na mistura água e MEG (Regressão)	81
4.2.2	Sistema com mistura água e MEG (H $_2$ O+MEG+KCI)	81
4.2.1.2	Sistema MEG+KCI	79
4.2.1.1	Sistema H ₂ O+KCI	77
4.2.1	Sistemas com solvente simples	77
4.2	Sistemas com KCI	77
4.1.2.10	Logaritmo de excesso do coeficiente de atividade do NaCl na mistura água e MEG (Predição)	76
4.1.2.9	Logaritmo de excesso do coeficiente de atividade do NaCI na mistura água e MEG	75
4.1.2.8	Coeficiente de atividade do NaCl na mistura água e MEG (Predição)	74
4.1.2.7	Coeficiente de atividade do NaCl na mistura água e MEG	73
4.1.2.6	Logaritmo de excesso da molalidade do NaCl na mistura água e MEG (Predição)	72
4.1.2.5	Logaritmo de excesso da molalidade do NaCl na mistura água e MEG	71
4.1.2.4	Molalidade do NaCl na mistura água e MEG (Predição)	70
4.1.2.3	Molalidade do NaCl na mistura água e MEG	69
4.1.2.2	Potencial guímico padrão de excesso do NaCl na mistura água e MEG (Predição)	68

B.2	Requisitos para o Ubuntu [®]
B.2.1	Instalação e configuração
B.2.2	Compilação e execução
B.2.3	Exemplo
B.3	Requisitos para o Windows [®]
B.3.1	Instalação e configuração dos requisitos
B.3.2	Compilação e execução
B.3.3	Exemplo
B.4	Requisitos para o Mac OS X [®]
B.4.1	Instalação e configuração
B.4.2	Compilação e execução
B.4.3	Exemplo
	APÊNDICE C – PROGRAMA VLE REGRESSION
C .1	Interface Gráfica do Usuário
C.2	Código Fonte da Biblioteca de Modelos Termodinâmicos
C.3	Código Fonte do Programa Principal
C.4	Arquivo com Dados de Entrada
	APÊNDICE D – PROGRAMA JAFOSSMS
D.1	Ícone do Programa
D.2	Código Fonte do Arquivo <i>Qt Resource</i>
D.3	Código Fonte da Interface Gráfica do Usuário
D.4	Código Fonte do <i>widget</i> do <i>matplotlib</i>
D.5	Código Fonte do Programa Principal
D.6	Arquivo com Dados de Entrada
D.6.1	Arquivo principal
D.6.2	Arquivo específico

Lista de ilustrações

Figura 1 –	Localização do Campo de Mexilhão.	3
Figura 2 –	Plataforma de Mexilhão (PMXL-1)	4
Figura 3 $-$	Desenvolvimento do Campo de Mexilhão.	4
Figura 4 $-$	Atividade de produção de gás e condensado para o Campo de Mexilhão.	5
Figura 5 $$ –	Remoção de bloco de hidratos de tubulação	6
Figura 6 –	Estrutura dos hidratos de metano e etano	7
Figura 7 $-$	Mecanismos de inibição de hidratos.	8
Figura 8 –	Esquema de formação de etilenoglicóis	9
Figura 9 –	Processo de recuperação do MEG (década de 1990)	10
Figura 10 –	Típica faixa de operação do processo de recuperação do MEG	11
Figura 11 –	Seção de destilação do processo de regeneração do MEG	12
Figura 12 –	Remoção de sais após o separador a vácuo e no circuito de reciclo no	
	processo de recuperação do MEG	13
Figura 13 –	Trocador de calor em espiral	13
Figura 14 –	Processo Pure MEG^{TM} da Cameron	14
Figura 15 –	Unidade de MEG utilizada na plataforma PMXL-1	15
Figura 16 –	Representação do equílibrio de um elétrolito em mistura de solventes	20
Figura 17 –	Conceito de solução ideal hipotética.	21
Figura 18 –	Fluxograma de obtenção de propriedades termodinâmicas a partir da	
	energia livre de Gibbs.	26
Figura 19 –	Fluxograma simplificado da metodologia empregada nesta tese de dou-	
	torado	37
Figura 20 –	Estratégia de abordagem do trabalho desta tese de doutorado	38
Figura 21 –	Fluxograma da sub-rotina Pitzer	49
Figura 22 –	Fluxograma da subrotina beta1_MEG	49
Figura 23 –	Fluxograma da subrotina prop_mix	50
Figura 24 –	Fluxograma da subrotina b_mix	51
Figura 25 –	Programa <i>JAFOSSMS</i> : Seleção do sistema a ser estudado	53
Figura 26 –	Programa <i>JAFOSSMS</i> : Relatório gerado	54
Figura 27 –	programa <i>JAFOSSMS</i> : Opções para geração de gráfico binário	54
Figura 28 –	Programa <i>JAFOSSMS</i> : Opções para geração de gráfico ternário	55
Figura 29 –	Programa <i>JAFOSSMS</i> : Seleção das isotermas para geração de gráfico	
	ternário.	55
Figura 30 –	Programa <i>JAFOSSMS</i> : Gráfico binário	56
Figura 31 –	Programa <i>JAFOSSMS</i> : Gráfico ternário	56
Figura 32 -	Molalidade do NaCl em H_2O em função da Temperatura	63

Figura 33 $-$	Molalidade do NaCl em MEG em função da Temperatura	65
Figura 34 –	Potencial químico padrão de excesso do NaCl na mistura água e MEG	
	em função da fração molar de MEG livre de NaCl (Regressão) ¹	67
Figura 35 –	Potencial químico padrão de excesso do NaCl na mistura água e MEG $\hfill \sim$	
	em função da fração molar de MEG livre de NaCl (Predição)	68
Figura 36 –	Molalidade do NaCl na mistura água e MEG em função da fração molar \hfill	
	de MEG livre de NaCl	69
Figura 37 –	Molalidade do NaCl na mistura água e MEG em função da fração molar \hfill	
	de MEG livre de NaCl (Predição).	70
Figura 38 –	Logaritmo de excesso da molalidade do NaCl na mistura água e MEG	
	em função da fração molar de MEG livre de NaCl	71
Figura 39 –	Logaritmo de excesso da molalidade do NaCl na mistura água e MEG	
	em função da fração molar de MEG livre de NaCl (Predição). \ldots .	72
Figura 40 –	Coeficiente de atividade do NaCl na mistura água e MEG em função	
	da fração molar de MEG livre de NaCl	73
Figura 41 –	Coeficiente de atividade do NaCl na mistura água e MEG em função	
	da fração molar de MEG livre de NaCl (Predição)	74
Figura 42 –	Logaritmo de excesso do coeficiente de atividade do NaCl na mistura	
	água e MEG em função da fração molar de MEG livre de NaCl	75
Figura 43 –	Logaritmo de excesso do coeficiente de atividade do NaCl na mistura	
	água e MEG em função da fração molar de MEG livre de NaCl (Predição).	76
Figura 44 –	Molalidade do KCl em H ₂ O em função da Temperatura	78
Figura 45 –	Molalidade do KCl em MEG em função da Temperatura	80
Figura 46 –	Potencial químico padrão de excesso do KCl na mistura água e MEG	
	em função da fração molar de MEG livre de KCl (Regressão)	82
Figura 47 –	Potencial químico padrão de excesso do KCl na mistura água e MEG	
	em função da fração molar de MEG livre de KCl (Predição)	83
Figura 48 –	Molalidade do KCl na mistura água e MEG em função da fração molar \hfill	
	de MEG livre de KCl.	84
Figura 49 –	Isoterma da molalidade do KCl na mistura água e MEG em função da \hfill	
	fração molar de MEG livre de KCl (Predição)	85
Figura 50 –	Logaritmo de excesso da molalidade do KCl na mistura água e MEG $-$	
	em função da fração molar de MEG livre de KCl	86
Figura 51 –	Logaritmo de excesso da molalidade do KCl na mistura água e MEG $-$	
	em função da fração molar de MEG livre de KCl (Predição). \ldots .	87
Figura 52 $-$	Coeficiente de atividade do KCl na mistura água e MEG em função da	
	fração molar de MEG livre de KCl	88
Figura 53 –	Coeficiente de atividade do KCl na mistura água e MEG em função da	
	fração molar de MEG livre de KCl (Predição)	89

Figura 54 –	Logaritmo de excesso do coeficiente de atividade do KCl na mistura	
	água e MEG em função da fração molar de MEG livre de KCl	90
Figura 55 –	Logaritmo de excesso do coeficiente de atividade do KCl na mistura	
	água e MEG em função da fração molar de MEG livre de KCl (Predição).	91
Figura 56 –	<i>Modelo de Pitzer</i> implementado $(\gamma_{\text{NaCl}}^{\{\text{H}_2\text{O}\}} \times b_{\text{NaCl}}^{\{\text{H}_2\text{O}\}} \text{ a 25 °C}).$	92
Figura 57 –	<i>Modelo de Pitzer</i> implementado $(\gamma_{\text{KCl}}^{\{\text{H}_2\text{O}\}} \times b_{\text{KCl}}^{\{\text{H}_2\text{O}\}})$	93
Figura 58 –	<i>Modelo de Pitzer</i> implementado $(\gamma_{\text{KCl}}^{\{\text{H}_2\text{O}\}} \times b_{\text{KCl}}^{\{\text{H}_2\text{O}\}})$ utilizando os parâ-	
	metros de Zemaitis Jr. et al. (1986, p. 103). \ldots \ldots \ldots	94
Figura 59 –	Comparação do Modelo JAFOSSMS com o Modelo Ideal (NaCl)	95
Figura 60 –	Comparação do Modelo JAFOSSMS com o Modelo Ideal (KCl)	96
Figura 61 –	Programas VLE Regression e JAFOSSMS no Ubuntu [®] 14.04 LTS 1	22
Figura 62 –	Programas VLE Regression e JAFOSSMS no Windows [®] 7 Home Basic. 1	24
Figura 63 –	Programas VLE Regression e JAFOSSMS no Mac OS $X^{\textcircled{B}}$ 10.6 Snow	
	<i>Leopard.</i>	25
Figura 64 –	Ícone do Programa <i>JAFOSSMS</i> 1	39

Lista de tabelas

Tabela 1 –	Banco de dados de solubilidade de sal em água a diferentes temperaturas.	27
Tabela 2 –	Banco de dados de solubilidade de sal em mistura de solventes	28
Tabela 3 –	Características da água de formação do reservatório do campo de Mexilhão.	39
Tabela 4 –	Dados experimentais de solubilidade de sal em água a diferentes tempe-	
	raturas usados nesta tese de doutorado.	40
Tabela 5 –	Dados experimentais de solubilidade de sal em mistura de solventes	
	usados nesta tese de doutorado	40
Tabela 6 –	Valores de constantes utilizados nesta tese de doutorado	48
Tabela 7 –	Valores de $flag$ na sub-rotina prop_mix	50
Tabela 8 –	ANOVA (Sistema $H_2O+NaCl$)	62
Tabela 9 –	Parâmetros obtidos (Sistema $H_2O+NaCl$)	62
Tabela 10 –	Matriz de Correlação (Sistema H ₂ O+NaCl)	62
Tabela 11 –	ANOVA (Sistema MEG+NaCl).	64
Tabela 12 –	Parâmetros obtidos (Sistema MEG+NaCl).	64
Tabela 13 –	Matriz de Correlação (Sistema MEG+NaCl).	64
Tabela 14 –	ANOVA (Sistema $H_2O+MEG+NaCl$)	66
Tabela 15 –	Parâmetros obtidos (Sistema $H_2O+MEG+NaCl$)	66
Tabela 16 –	Matriz de Correlação (Sistema $H_2O+MEG+NaCl$)	66
Tabela 17 –	ANOVA (Sistema H_2O+KCl)	77
Tabela 18 –	Parâmetros obtidos (Sistema H_2O+KCl)	77
Tabela 19 –	Matriz de Correlação (Sistema H_2O+KCl)	78
Tabela 20 –	ANOVA (Sistema MEG+KCl).	79
Tabela 21 –	Parâmetros obtidos (Sistema MEG+KCl)	79
Tabela 22 –	Matriz de Correlação (Sistema MEG+KCl)	80
Tabela 23 –	ANOVA (Sistema $H_2O+MEG+KCl$)	81
Tabela 24 –	Parâmetros obtidos (Sistema $H_2O+MEG+KCl$)	81
Tabela 25 –	Matriz de Correlação (Sistema $H_2O+MEG+KCl$)	82
Tabela 26 –	Comparação do Modelo JAFOSSMS com o Modelo Ideal (NaCl)	95
Tabela 27 –	Comparação do Modelo JAFOSSMS com o Modelo Ideal (KCl)	96
Tabela 28 –	Dados de equilíbrio usados na comparação do Modelo JAFOSSMS com	
	o Modelo UNIQUAC+DH	97
Tabela 29 –	Comparação do Modelo JAFOSSMS com o Modelo UNIQUAC+DH.	97

Lista de abreviaturas e siglas

ANOVA	Análise de Variância
ANP	Agência Nacional de Petróleo Gás Natural e Biocombustíveis
CENPES	Centro de Pesquisas da Petrobras
DEG	Dietileno glicol
DH	Debye-Hückel
ELL	Equilíbrio Líquido-Líquido
ELV	Equilíbrio Líquido-Vapor
FOTEQ	Laboratório de Fotoquímica e Equilíbrio de Fases
H_2O	Água
IDE	<i>Integrated Development Environment</i> (Ambiente de Desenvolvimento Integrado)
MSL	International Mathematics and Statistics Library
KCl	Cloreto de potássio
MEG	Monoetileno glicol
NaCl	Cloreto de sódio
NUPEG	Núcleo de Ensino e Pesquisa em Petróleo e Gás
NRTL	Non-Random Two Liquid
OE	Óxido de etileno
PDH	Pitzer-Debye-Hückel
PMXL-1	Plataforma número 1 do Campo de Mexilhão na Bacia de Santos
PPGEQ	Pós-Graduação em Engenharia Química
PRH	Programa de Recursos Humanos
SIT	Specific ion Interaction Theory
SRK	Soave-Redlich-Kwong

TEG	Trietileno glicol
UFERSA	Universidade Federal Rural do Semi-Árido
UFRN	Universidade Federal do Rio Grande do Norte
UFSM	Universidade Federal de Santa Maria
UNIFAC	UNIQUAC Functional-group Activity Coefficients
UNIQUAC	UNIversal QUAsiChemical

Lista de símbolos

b_i	molalidade de i
n_i	número de moles de i
$m_{ m solv}$	massa do solvente
M_i	massa molar de i
C_i	molaridade de i
V	volume da solução
x_i	fração molar de i na fase líquida
n	número de moles total na solução
μ_i	potencial químico de i
G	energia livre de Gibbs
T	temperatura
Р	pressão
$n_{j \neq i}$	todos os números de moles exceto o referente a \boldsymbol{i}
μ^ullet_i	potencial químico de i em um estado padrão apropriadamente escolhido
R	constante universal do gases ideais
a_i	atividade de i
γ_i	coeficiente de atividade de i
ξ_i	uma escala de concentração conveniente
MX	eletrólito eletricamente neutro (abreviado)
$\mu_{ m MX}^{ m s}$	potencial químico de MX na fase sólida
$\mu_{\mathrm{MX}}^{\mathrm{\{H_2O\}}}$	potencial químico de MX na fase líquida H_2O
$\mu_{ m MX}^{\{ m MEG\}}$	potencial químico de MX na fase líquida MEG
$\mu_{\mathrm{MX}}^{\{\mathrm{H_2O+MEG}\}}$	potencial químico de MX na fase líquida $H_2O + MEG$

μ_i^0	potencial químico racional simétrico de i
$\mu_{i,x}^{\triangledown}$	potencial químico racional assimétrico
$\gamma_{i,x}^*$	coeficiente de atividade racional assimétrico
γ_i^∞	coeficiente de atividade em diluição infinita
b_0	molalidade unitária
$\mu_{i,b}^{\triangledown}$	potencial químico molal assimétrico
$\gamma^*_{i,b}$	coeficiente de atividade molal assimétrico
$x_{\rm solv}$	fração molar de solvente na fase líquida
$M_{\nu_+}X_{\nu}$	eletrólito eletricamente neutro
$ u_+$	coeficiente estequiométrico do cátion
z_+	carga do cátion
$ u_{-}$	coeficiente estequiométrico do ânion
z_{-}	carga do ânion
γ_{\pm}	coeficiente de atividade médio iônico
b_{\pm}	molalidade média iônica
γ_+	coeficiente de atividade do cátion
γ	coeficiente de atividade do ânion
b_+	molalidade do cátion
b_{-}	molalidade do ânion
ν	coeficiente estequiométrico total
y_i	fração molar de i na fase vapor
$P_i^{\rm sat}$	pressão de vapor de i puro
H_i	constante de Henry para i
κ^{-1}	comprimento de Debye-Hückel
ε_0	permissividade do vácuo
$arepsilon_{ m r}$	constante dielétrica (também conhecida como permissividade relativa)

$k_{\rm B}$	constante de Boltzmann
N_A	número de Avogadro
e_0	carga do elétron
I_c	força iônica molar
z_i	carga de i
$\gamma_{i,c}$	coeficiente de atividade molar de i
$ ho_{ m solv}$	densidade absoluta do solvente
$\gamma_{i,b}$	coeficiente de atividade molal de i
A_{γ}	constante de Debye-Hückel na forma para coeficiente de atividade
I_b	força iônica molal
Ι	força iônica
A	parâmetros dependentes da temperatura (<i>Lei de Debye-Hückel Exten-</i> dida)
В	parâmetros dependentes da temperatura (<i>Lei de Debye-Hückel Exten-</i> dida)
a	parâmetro relacionado ao tamanho dos íons (<i>Lei de Debye-Hückel Ex-</i> tendida)
М	uma propriedade
\mathcal{M}^{E}	uma propriedade de excesso
$\mathscr{M}^{\mathrm{id}}$	uma propriedade ideal
$ar{\mathcal{M}}_i$	uma propriedade parcial molar de i
$ar{\mathcal{M}}_i^{ ext{E}}$	uma propriedade parcial molar de excesso de i
$ar{\mathcal{M}}_i^{ ext{id}}$	uma propriedade parcial molar ideal de i
\bar{G}_i	energia livre de Gibbs parcial molar de i
S	entropia
Н	energia livre de Helmholtz
$n_{ m H_2O}$	número de moles da água

$\mu_{ m H_2O}$	potencial químico da água
$n_{ m MX}$	número de moles do eletrólito MX
\hat{f}_i	fugacidade de i na solução
f_i^{ullet}	fugacidade de i em um estado padrão apropriadamente escolhido
f_i^0	fugacidade racional simétrica de i
$H_{i,x}$	constante de Henry racional
$H_{i,b}$	constante de Henry molal
$\left[\ln b_{\rm MX}^{\rm \{H_2O+MEG\}}\right]^{\rm id}$	logaritmo ideal da molalidade de MX na mistura água e MEG
$x'_{\rm H_2O}$	fração molar de água livre de sal na mistura de solventes
$x'_{\rm MEG}$	fração molar de MEG livre de sal na mistura de solventes
$b_{\mathrm{MX}}^{\{\mathrm{H_2O}\}}$	molalidade de MX em água
$b_{ m MX}^{\{ m MEG\}}$	molalidade de MX em MEG
$\left[\ln b_{\rm MX}^{\rm \{H_2O+MEG\}}\right]^{\rm E}$	logaritmo de excesso da molalidade de MX na mistura água e MEG
$b_{\mathrm{MX}}^{\{\mathrm{H_2O+MEG}\}}$	molalidade de MX na mistura água e MEG
$k_{\rm S}$	constante de Setchenov
ϕ	coeficiente osmótico
$a_{\rm H_2O}$	atividade da água
$M_{\rm H_2O}$	massa molar da água
$z_{ m M}$	carga do cátion (M)
$z_{\rm X}$	carga do ânion (X)
$f^{\phi}_{ m MX}$	função de Debye-Hückel na forma para o coeficiente osmótico
в	constante o Modelo de Pitzer
A_{ϕ}	constante de Debye-Hückel na forma para coeficiente osmótico
$b_{\rm MX}$	molalidade de MX
$ u_{\mathrm{M}}$	coeficiente estequiométrico do cátion
$ u_{\mathrm{X}}$	coeficiente estequiométrico do ânion

$B^{\phi}_{ m MX}$	segundo coeficiente do virial na forma para coeficiente osmótico
$C^{\phi}_{ m MX}$	terceiro coeficiente do virial na forma para coeficiente osmótico (parâmetro do $Modelo \ de \ Pitzer)$
$eta_{\mathrm{MX}}^{(0)}$	parâmetro do Modelo de Pitzer
$\beta_{\mathrm{MX}}^{(1)}$	parâmetro do Modelo de Pitzer
α	constante do Modelo de Pitzer ou nível de significância
$f_{ m MX}^\gamma$	função de Debye-Hückel na forma para o coeficiente de atividade
$B_{ m MX}^\gamma$	segundo coeficiente do virial na forma para coeficiente osmótico
$C_{ m MX}^{\gamma}$	terceiro coeficiente do virial na forma para coeficiente osmótico
$w_{ m MX}$	fração mássica de MX
$M_{\rm MX}$	massa molar de MX
$m_{ m MX}$	massa de MX
$m_{\rm H_2O+MEG}$	massa de água e MEG
$m_{ m MEG}$	massa de MEG
$M_{\rm MEG}$	massa molar do MEG
$m_{ m H_2O}$	massa de água
$M_{\rm H_2O}$	massa molar da água
$w'_{ m H_2O}$	fração mássica de água livre de sal na mistura de solventes
$w'_{\rm MEG}$	fração mássica de MEG livre de sal na mistura de solventes
$\varepsilon_{\rm r,H_2O}$	constante dielétrica (também conhecida como permissividade relativa) da água
$\varepsilon_{ m r,MEG}$	constante dielétrica (também conhecida como permissividade relativa) do MEG
$\varepsilon_{\rm r,H_2O+MEG}$	constante dielétrica (também conhecida como permissividade relativa) da mistura água e MEG
$ ho_{ m H_2O}$	densidade absoluta da água
au	parâmetro relacionado a temperatura usado na Equação 3.10

$ ho_{ m MEG}$	densidade absoluta do MEG
$ ho_{\mathrm{H_2O+MEG}}$	densidade absoluta da mistura água e MEG
$\gamma_{ m MX}$	coeficiente de atividade de MX
$\gamma_{\rm MX}^{\rm \{H_2O\}}$	coeficiente de atividade de MX em água
$\gamma_{\mathrm{MX}}^{\{\mathrm{MEG}\}}$	coeficiente de atividade de MX em MEG
$\Delta_{\rm tr} G^0_{\rm H_2O \rightarrow \rm MEG}$	energia livre de Gibbs de transferência da água para o MEG
$A_{\phi,\mathrm{H}_{2}\mathrm{O}}$	constante de Debye-Hückel da água na forma para coeficiente osmótico
$A_{\phi,\mathrm{MEG}}$	constante de Debye-Hückel do MEG na forma para coeficiente osmótico
$A_{\phi,\mathrm{H_2O+MEG}}$	constante de Debye-Hückel da mistura água e MEG na forma para coeficiente osmótico
$eta_{\mathrm{NaCl}}^{(0)\{\mathrm{H}_2\mathrm{O}\}}$	parâmetro do Modelo de Pitzer para o NaCl em água
$\beta_{\rm NaCl}^{(1)\{\rm H_2O\}}$	parâmetro do Modelo de Pitzer para o NaCl em água
$C_{ m NaCl}^{\phi \{ m H_2O\}}$	terceiro coeficiente do virial na forma para coeficiente de atividade para o NaCl em água (parâmetro do <i>Modelo de Pitzer</i>)
$\beta_{\mathrm{KCl}}^{(0)\{\mathrm{H}_2\mathrm{O}\}}$	parâmetro do Modelo de Pitzer para o KCl em água
$\beta_{\rm KCl}^{(1)\{\rm H_2O\}}$	parâmetro do Modelo de Pitzer para o KCl em água
$C_{\mathrm{KCl}}^{\phi\{\mathrm{H}_2\mathrm{O}\}}$	terceiro coeficiente do virial na forma para coeficiente de atividade para o KCl em água (parâmetro do <i>Modelo de Pitzer</i>)
$eta_{\mathrm{MX}}^{(0)\{\mathrm{MEG}\}}$	parâmetro do <i>Modelo de Pitzer</i> para MX em MEG
$C_{\mathrm{MX}}^{\phi\{\mathrm{MEG}\}}$	terceiro coeficiente do virial na forma para coeficiente de atividade para o MX em MEG (parâmetro do <i>Modelo de Pitzer</i>)
$\beta_{\rm MX}^{(0)\{\rm H_2O\}}$	parâmetro do Modelo de Pitzer para MX em água
$C_{\mathrm{MX}}^{\phi\{\mathrm{H_2O}\}}$	terceiro coeficiente do virial na forma para coeficiente de atividade para MX em água (parâmetro do <i>Modelo de Pitzer</i>)
$\beta_{\mathrm{MX}}^{(1)\{\mathrm{MEG}\}}$	parâmetro do <i>Modelo de Pitzer</i> para MX em MEG
$\beta_{\rm MX}^{\rm (0) \{H_2O+MEG\}}$	parâmetro do Modelo de Pitzer para MX na mistura água e MEG
$C_{\mathrm{MX}}^{\phi\{\mathrm{H_2O+MEG}\}}$	terceiro coeficiente do virial na forma para coeficiente de atividade para MX na mistura água e MEG (parâmetro do <i>Modelo de Pitzer</i>)

$\beta_{\mathrm{MX}}^{(1){\mathrm{H_2O+MEG}}}$	parâmetro do <i>Modelo de Pitzer</i> para MX na mistura água e MEG
$\beta_{\rm MX}^{(1)\{\rm H_2O\}}$	parâmetro do Modelo de Pitzer para MX em água
А	parâmetro usado na Equação 3.33
R	parâmetro usado na Equação 3.33
Θ_{-2}	parâmetro ajustável da Equação 3.36
T_0	temperatura unitária
Θ_i	parâmetro ajustável da Equação 3.36
$\left[\mu_{MX}^{0\{H_2O+MEG\}}\right]^E$	potencial químico padrão de excesso de MX na mistura água e MEG
$\Theta_{i,j}$	parâmetro usado na Equação 3.37
$\left[\ln \gamma_{MX}^{\{H_2O+MEG\}} \right]^{id}$	logaritmo ideal do coeficiente de atividade de MX na mistura água e MEG
$\left[\ln b_{\rm MX}^{\rm \{H_2O+MEG\}}\right]^{\rm E}$	logaritmo de excesso da molalidade de MX na mistura água e MEG
$\left[\ln \gamma_{\rm MX}^{\rm \{H_2O+MEG\}} \right]^{\rm E}$	logaritmo de excesso do coeficiente de atividade de MX na mistura água e MEG
$b_{ m NaCl}^{ m \{H_2O\}}$	molalidade do NaCl em água
$ heta_0$	parâmetro ajustável usado na Equação 4.1, na Equação 4.2, na Equação 4.3, na Equação 4.4, na Equação 4.5 e na Equação 4.6
Θ_0	parâmetro ajustável da Equação 3.36 usado na Equação 4.1, na Equação 4.2, na Equação 4.4 e na Equação 4.5
$ heta_1$	parâmetro ajustável usado na Equação 4.1, na Equação 4.2, na Equação 4.3, na Equação 4.4, na Equação 4.5 e na Equação 4.6
Θ_1	parâmetro ajustável da Equação 3.36 usado na Equação 4.1, na Equação 4.2, na Equação 4.4 e na Equação 4.5
$ heta_2$	parâmetro ajustável usado na Equação 4.1, na Equação 4.3, na Equação 4.4 e na Equação 4.6
\$	desvio padrão assintótico
R^2	coeficiente de determinação
$R_{\rm ajustado}^2$	coeficiente de determinação ajustado

$b_{ m NaCl}^{\{ m MEG\}}$	molalidade do NaCl em MEG
$b_{ m NaCl}^{\{ m H_2O+MEG\}}$	molalidade do NaCl na mistura água e MEG
$\Theta_{0,0}$	parâmetro ajustável da Equação 3.37 usado na Equação 4.3 e na Equação 4.6
$\Theta_{0,1}$	parâmetro ajustável da Equação 3.37 usado na Equação 4.3 e na Equação 4.6
$\Theta_{1,0}$	parâmetro ajustável da Equação 3.37 usado na Equação 4.3 e na Equação 4.6
$\Theta_{1,1}$	parâmetro ajustável da Equação 3.37 usado na Equação 4.3 e na Equação 4.6
$\Theta_{2,0}$	parâmetro ajustável da Equação 3.37 usado na Equação 4.3 e na Equação 4.6
$\Theta_{2,1}$	parâmetro ajustável da Equação 3.37 usado na Equação 4.3 e na Equação 4.6
$ heta_3$	parâmetro ajustável usado na Equação 4.3 e na Equação 4.6
$ heta_4$	parâmetro ajustável usado na Equação 4.3 e na Equação 4.6
$ heta_5$	parâmetro ajustável usado na Equação 4.3 e na Equação 4.6
$b_{\mathrm{KCl}}^{\mathrm{\{H_2O\}}}$	molalidade do KCl em água
$b_{ m KCl}^{\{ m MEG\}}$	molalidade do KCl em MEG
$b_{\mathrm{KCl}}^{\{\mathrm{H_2O+MEG}\}}$	molalidade do KCl na mistura água e MEG
$x_{ m KCl}^{ m ionizada}$	fração molar de KCl em base iônica
$x_{ m KCl}$	fração molar de KCl
CAPÍTULO 1 INTRODUÇÃO

1 INTRODUÇÃO

Na indústria de produção do gás natural, de uma maneira geral, evita-se a formação de hidratos nas tubulações por meio da injeção de um glicol na cabeça do poço, principalmente, de monoetilenoglicol (MEG). Embora considere-se que a injeção do MEG resolva os problemas com hidratos na produção, na etapa de recuperação do MEG injetado, pode ocorrer a formação de precipitados. Assim sendo, faz-se necessário o conhecimento da solubilidade dos sais presentes na água de produção, nas condições de operação, em função da concentração do MEG, para poder-se evitar a formação destes indesejáveis precipitados.¹

1.1 Atividade de Produção no Campo de Mexilhão

Na atividade de produção de gás natural no Brasil tem grande destaque a plataforma PMXL-1 do Campo de Mexilhão situado na Bacia de Santos (Figura 1). Esta plataforma, cuja jaqueta foi construída no Estaleiro Mauá (Niterói, RJ), é considerada a maior estrutura

Figura 1 – Localização do Campo de Mexilhão.

Fonte: Petrobras (2007, p. 5).

¹ As informações presentes nesta seção foram obtidas de Petrobras (2007).

metálica *off-shore* já construída no Brasil (Figura 2). A operação da plataforma de PMXL-1 iniciou-se em 2011.

Figura 2 – Plataforma de Mexilhão (PMXL-1).

(a) Transporte da jaqueta.

(b) Fixada no Campo de Mexilhão.

Fonte: Galante (2009) e Belchior (2013, p. 37) respectivamente.

No Campo de Mexilhão, a atividade de produção e escoamento de gás e condensado contempla o emprego de poços produtores, um sistema de coleta constituído por linhas e estruturas submarinas, uma plataforma marítima e um sistema de escoamento da produção para a Unidade de Tratamento de Gás de Caraguatatuba (UTGCA), na costa, por meio de gasoduto submarino (Figura 3).

Figura 3 – Desenvolvimento do Campo de Mexilhão.

Fonte: Naumann (2009, p. 11).

A plataforma de produção encontra-se fixada, por meio de jaqueta, ao leito submarino a uma profundidade de 172 metros. Ela está interligada aos poços produtores possuindo uma capacidade de processamento estimada em 15 milhões de m³/dia de gás e de 3,2 mil m³/dia para o condensado.

A atividade de produção de gás e condensado do Campo de Mexilhão está representada pela Figura 4.

Figura 4 – Atividade de produção de gás e condensado para o Campo de Mexilhão.

Fonte: Petrobras (2007, p. 25).

Durante a atividade de produção, o fluido proveniente do reservatório é coletado através do sistema submarino diretamente para a plataforma. Este é rico em gás, além de condensado e pequena quantidade de água. Na plataforma realiza-se o processamento da produção.

As principais etapas envolvendo o fluido produzido são:

- a) Coleta do fluido produzido (gás, condensado e água) no poço;
- b) Separação do gás, condensado e água na plataforma;

- c) Tratamento do gás e do condensado na plataforma;
- d) Processamento de parte do gás para suporte ao processo de produção (geração de energia);
- e) Circulação do MEG pelo sistema submarino de coleta, evitando-se assim entupimentos por formação de hidratos no interior das tubulações, e posterior regeneração do MEG na plataforma.

Após tratamento, gás e condensado são bombeados para o litoral (UTGCA) através de gasoduto.

1.2 Formação de Hidratos em Tubulações

Em condições termodinâmicas favoráveis, de temperatura e pressão, poderá haver a formação de hidratos em tubulações. Estes poderão provocar o bloqueio do fluido em linhas, dutos e equipamentos e, consequentemente, interrupção na produção, entre outros problemas.

A obstrução de tubulações de produção pode ser um problema grave com enormes prejuízos e, portanto, deve ser evitado a todo custo.

A interrupção para remoção manual dos blocos de hidratos normalmente demanda diminuição ou até interrupção na produção, além de exigir procedimentos com operações de risco para a plataforma. O processo de remoção manual e a dimensão do problema pode ser compreendida melhor por meio da vizualização das dimensões dos blocos de hidratos removidos do interior de uma tubulação mostrados na Figura 5(a) e na Figura 5(b).

Figura 5 – Remoção de bloco de hidratos de tubulação.

(a) Sendo removido.

Fonte: Moura (2007, p. 11).

(b) Após a remoção.

1.3 Estrutura dos Hidratos

Conforme Baptista (2007), a atração entre os pólos de cargas opostas de duas moléculas de água distintas origina ligações conhecidas como pontes de hidrogênio. Estas ligações são as mais fortes dentre as ligações intermoleculares. Necessita-se de aproximadamente 5 kcal/mol de energia para romper uma ponte de hidrogênio enquanto que para uma ligação de van der Waals essa energia é de 0,3 kcal/mol. As pontes de hidrogênio contribuem ativamente na energia de dissociação da estrutura dos hidratos.

Na Figura 6 está representado uma molécula de hidrocarboneto que encontra-se aprisionada por meio de rede de pontes de hidrogênio formadas com outras moléculas de água.

Figura 6 – Estrutura dos hidratos de metano e etano.

Fonte: Statoil (2011, p. 4).

1.4 Inibição da Formação de Hidratos

Substâncias que provocam o atraso na cinética de formação de hidratos, ou mesmo, impedem a sua formação, são conhecidas como Inibidores da formação de hidratos. Conforme Andrade (2009) estes podem ser classificados em três tipos:

a) Inibidores termodinâmicos: são geralmente sais inorgânicos (NaCl, CaCl₂, KCl), alcoóis (metanol) e glicóis (MEG) que objetivam reduzir a atividade da água, quantidade de água livre na mistura, e com isso deslocar a curva de equilíbrio de fases, desfavorecendo a formação de hidratos;

- b) Inibidores cinéticos: são polímeros solúveis em água e que reagem sinergicamente com glicóis e alcoóis de alto peso molecular. Esses aditivos são capazes de retardar o início da nucleação e diminuem a taxa de crescimento de cristais de hidratos;
- c) Antiaglomerantes: são basicamente polímeros e tensoativos, os quais, de modo similar aos inibidores cinéticos, quando utilizados em pequenas quantidades já surtem os efeitos desejados. Sua principal função é retardar a aglomeração de cristais e facilitar o transporte dos núcleos já formados. Não impedem a formação de cristais de hidratos, no entanto, ajudam bastante no transporte dos cristais formados.

Estes inibidores e seus mecanismos estão ilustrados na Figura 7.

Figura 7 – Mecanismos de inibição de hidratos.

Fonte: Andrade (2009, p. 40), adaptada.

Alguns exemplos de inibidores de formação de hidratos e suas características são:

- a) Sais inorgânicos: podem causar corrosão e incrustação;
- b) Metanol: possui alta toxicidade, de difícil recuperação e não é adequado para injeção contínua;
- c) Glicóis: são pouco voláteis, de fácil recuperação e se concentram na fase aquosa.

1.5 O Monoetilenoglicol

O monoetilenoglicol (MEG), chamado simplesmente etilenoglicol, com nome IUPAC: etano-1,2-diol, ou 1,2-etanodiol, é um álcool com 2 grupos OH (um diol), largamente usado como anticongelante automotivo. Puro é um composto inodoro, incolor, líquido xaroposo com sabor doce. O MEG é tóxico, e sua ingestão é considerada uma emergência médica. Sua densidade absoluta a 20 °C é $1,1135 \text{ g/cm}^3$, com massa molar 62,068 g/mol, ponto de fusão -12,69 °C e ponto de ebulição 197,3 °C (LIDE, 2009).

O MEG é o mais simples dos etilenoglicóis. Normalmente é obtido pela reação de água com óxido de etileno (OE). Reagindo-se MEG com óxido de eteno, produz-se o dietilenoglicol (DEG) e a partir deste, adicionando-se mais óxido de etileno, chega-se ao trietilenoglicol (TEG). A representação da sequência de reações de formação dos etilenoglicóis é ilustrada na Figura 8.

Fonte: Andrade (2009, p. 41), adaptada.

1.6 Uso do MEG como Inibidor da Formação de Hidratos

O uso do MEG como inibidor da formação de hidratos, por injeção na cabeça do poço, apresenta vantagens, como por exemplo:

- a) Menor viscosidade \Rightarrow maior facilidade de escoamento;
- b) Fácil recuperação \Rightarrow menos solúvel em hidrocarbonetos líquidos;
- c) Atua na redução da temperatura de formação de hidratos.

1.7 Processos de Recuperação e de Regeneração do MEG

Em plataformas de gás natural, o MEG tem sido largamente utilizado como inibidor da formação de hidratos sem grandes problemas. Por outro lado, no processo de recuperação do MEG para reuso podem ocorrer problemas causados por incrustações formadas pela precipitação de sais, tornando necessário o conhecimento das condições de formação, quantidade e natureza dos respectivos precipitados para, então, ser possível evitá-los. O elevado ponto de ebulição do MEG em relação ao da água e a tendência a decompor-se termicamente em ácidos orgânicos podem causar problemas em unidades de regeneração convencionais quando a água de formação for rica em sais. Estas unidades simplesmente fervem a água de soluções diluídas de MEG rico produzindo soluções reconcentradas de MEG pobre. Este processo funcionaria bem se não fosse o fato da água de formação normalmente conter concentrações altas de sais dissolvidos (principalmente NaCl) que tendem a acumularem-se no MEG pobre até a saturação e, vez ou outra, acima dela. O emprego deste processo pode causar perda de MEG por degradação térmica além de problemas operacionais (entupimentos e corrosão) pela precipitação de sais.

Na década de 1990 foi sugerido um processo que evitaria os problemas do processo convencional (Figura 9). Neste processo o MEG rico contaminado por sais flui para o interior de uma unidade de separação a vácuo onde ele é instantaneamente vaporizado quando misturado ao licor mãe aquecido. Este conceito de licor mãe aquecido tem sido utilizado por décadas. A corrente de alimentação, excluindo-se os sólidos dissolvidos e em suspensão, é vaporizada e flui para uma coluna de destilação convencional para ser separada em água e MEG pobre reconcentrado limpos.

Fonte: Nazzer e Keogh (2006, p. 2), adaptada.

O líquido de reciclo é tirado a partir da acumulação de líquido no separador a vácuo e, como dito anteriormente, devido ao MEG ter um ponto de ebulição muito mais elevado do que a água, o líquido resultante terá um teor de água muito menor do que a

alimentação de MEG rico. Calor sensível suficiente é adicionado ao fluido de reciclo para vaporizar completamente a alimentação de MEG rico. Isto é conseguido mantendo uma alta taxa de fluxo de reciclo aquecido por uma variação de apenas 10 a 20 graus Celsius, de modo a evitar a degradação térmica do MEG no circuito de reciclo. Nenhuma ebulição ocorre no aquecedor de reciclo devido ao líquido de reciclo estar sob pressão. Neste ponto no processo, o teor de água é reduzido, e o aumento de temperatura é pequeno.

A quantidade de calor adicionada ao aquecedor de reciclo varia com a taxa de alimentação de MEG rico: se a taxa de alimentação é aumentada (ou diminuída), em seguida, mais calor (ou menos) deve ser adicionado para manter um nível constante de líquido no separador a vácuo.

Geralmente fixa-se a pressão de operação de modo a manter-se temperaturas de processamento baixas o suficiente para evitar-se a degradação do MEG. O controle direto sobre a temperatura não é necessário, mas o nível do líquido no separador a vácuo deve ser medido e controlado de forma confiável. Isto é feito controlando-se a adição de calor ao aquecedor de reciclo conforme seja necessário. A temperatura de funcionamento do processo flutua livremente dentro de uma faixa prevista, sendo esta, definida pela pressão de operação e pela concentração do MEG na alimentação (Figura 10). Devido a estabilidade inerente do processo, não há necessidade de ação por parte do operador ou do sistema de controle quando o MEG contido na alimentação varia dentro do intervalo permitido.

Figura 10 – Típica faixa de operação do processo de recuperação do MEG.

Fonte: Nazzer e Keogh (2006, p. 3), adaptada.

Para poder ser utilizado no processo de inibição de hidrato, o MEG pobre é normalmente produzido com uma concentração que varia na faixa de 80% a 95% em peso de MEG. Esta concentração pode ser facilmente conseguida através do fracionamento do

MEG/vapor de água numa coluna de destilação convencional equipada com enchimento estruturado (Figura 11). Um refervedor geralmente não é necessário. Em situações normais, nenhuma energia térmica adicional é necessária para produzir 90-95% em peso de MEG em comparação com 80% em peso de MEG devido ao fato da alimentação na coluna de destilação ser tudo vapor.

Figura 11 – Seção de destilação do processo de regeneração do MEG.

Fonte: Nazzer e Keogh (2006, p. 3), adaptada.

Em processos atuais, os sólidos decantados passam pela camada estática de líquido no fundo do separador a vácuo, evitando o circuito de reciclo e descendo para a seção de remoção de sólidos da planta. Em métodos convencionais, a remoção de sólidos em fluxos de processo, faz-se por meio de pequena purga em corrente lateral. Aplicado a recuperação de MEG, implica em fluir uma fração do líquido de reciclo através do decantador e centrífuga. Um decantador a montante da centrífuga ocasiona a transição do regime contínuo para o em batelada, propiciando um meio de aumentar o teor de sólidos na lama a ser alimentada à centrífuga. Balanços de massa mostram que plantas onde os sólidos são removidos do circuito de reciclo tem uma carga de partículas muito alta. Isto aumenta o risco de interrupções para remover incrustações no aquecedor de reciclo e para reparar a erosão no equipamento e dutos. Logo, ocorrem benefícios substanciais com a segregação e remoção de partículas sólidas do separador a vácuo a montante da entrada do circuito de reciclo. Tipicamente a taxa de fluxo de reciclo é de 30 a 60 vezes maior que a alimentação de MEG rico, logo, uma pequena segregação de sólidos gera um aumento acentuado no desempenho. A Figura 12 mostra a remoção de sais pelo método convencional e pelo circuito de reciclo.

Fonte: Nazzer e Keogh (2006, p. 3), adaptada.

O aquecedor de reciclo é um item fundamental que deve aquecer de forma confiável uma alta taxa de fluxo do líquido com sais reciclado sem expor este a altas temperaturas que podem promover degradação térmica do MEG, e sem permitir deposição de material particulado em suspensão. Normalmente são utilizado trocadores de calor de alta performance como o trocador em espiral ilustrado na Figura 13.

Figura 13 – Trocador de calor em espiral.

A Figura 14 ilustra o Processo PureMEG[™] da Cameron que é utilizado na plataforma PMXL-1. Nele podem ser vistos vários dos conceitos e equipamentos comentados aqui. Este processo consiste de três etapas principais:

- a) pré-tratamento do MEG \Rightarrow remoção de hidrocarbonetos;
- b) recuperação do MEG \Rightarrow remoção de sais;
- c) regeneração do MEG \Rightarrow remoção de água.

Este processo recupera até $99{,}5\%$ de MEG.

Figura 14 – Processo Pure
MEG^{\rm TM} da Cameron.

Fonte: Cameron (2012, p. 5), adaptada.

Como fica notório, o conhecimento da solubilidade dos sais nas misturas aquosas com MEG, nos equipamentos da unidade de MEG, é informação crucial para o monitoramento das formações de incrustação de sais durante o processo.

Dados de solubilidade, densidade, pH e condutividade tem sido obtidos da literatura e em especial no laboratório de Fotoquímica e Equilíbrio de Fases (FOTEQ) da Universidade Federal do Rio Grande do Norte (UFRN). Os dados gerados pelo FOTEQ tem por meta possibilitar um melhor monitoramento do processo de recuperação do MEG, visando suprir a escassez dessas informações para sistemas aquosos com MEG e sais. Este fato também resulta na demanda de modelos para estes sistemas aquosos com eletrólitos e solvente orgânico, tema científico desta tese de doutorado. Neste sentido, também deve ser ressaltada a importância do projeto no que diz respeito à demanda da indústria do petróleo, em particular o campo de Mexilhão na Bacia de Santos que se destaca por sua significativa reserva. Dentro do exposto até aqui, tem-se que esta tese de doutorado visa abordar, através de modelagem termodinâmica, o comportamento de sistemas aquosos selecionados, contendo sais e MEG, presentes no processo de recuperação do MEG.

Com a finalidade meramente ilustrativa, a Figura 15 mostra o módulo de recuperação do MEG pelo processo Pure MEG^{TM} da Cameron utilizado na plataforma PMXL-1.

Figura 15 – Unidade de MEG utilizada na plataforma PMXL-1.

Fonte: Cameron (2012, p. 6).

CAPÍTULO 2 REVISÃO BIBLIOGRÁFICA

2 REVISÃO BIBLIOGRÁFICA

Neste capítulo, inicialmente, definições fundamentais e teorias para soluções eletrolíticas e mistura de solventes são apresentadas. Em seguida, é realizada uma revisão dos dados experimentais encontrados na literatura para soluções aquosas eletrolíticas com apenas um sal e um solvente orgânico. Por último, são apresentados modelos termodinâmicos para soluções eletrolíticas e mistura de solventes e, também, algumas ferramentas computacionais disponíveis para a implementação (ou apenas utilização) destes modelos.

2.1 Equilíbrio de Fases para Sistemas com Eletrólitos

2.1.1 Escalas de concentração

Geralmente a concentração de uma solução eletrolítica é expressa em molalidade, molaridade ou fração molar.

A molalidade é definida como o número de moles do soluto por quilo de solvente:

$$b_i^{\ 1} \equiv \frac{n_i}{m_{\rm solv}} = \frac{n_i}{n_{\rm solv}M_{\rm solv}} \tag{2.1}$$

onde b_i é a molalidade de i, n_i é o número de moles de i, m_{solv} é a massa do solvente e M_i é a massa molar de i.

A molaridade é definida como o número de moles do soluto por litro de solução:

$$c_i \equiv \frac{n_i}{V} \tag{2.2}$$

onde c_i é a molaridade de $i \in V$ é o volume da solução.

A fração molar é definida como a razão entre o número de moles do soluto pelo número de moles total na solução:

$$x_i \equiv \frac{n_i}{n} \tag{2.3}$$

onde x_i é a fração molar de *i* na fase líquida e *n* é o número de moles total na solução.

Como a molaridade é dependente da temperatura, está não é preferida como unidade de concentração em soluções eletrolíticas. Daqui para a frente será utilizada, quando for necessário maior clareza, os subscritos b, c ou x respectivamente para molalidade, molaridade ou fração molar, como indicação da escala de concentração utilizada.

¹ Neste trabalho de tese de doutorado, optou-se pelo uso de b_i para representar a molalidade de i, ao invés de m_i , para evitar-se confusão de notação com massa de i (m_i), conforme Cohen et al. (2007), p. 48 e Thompson e Taylor (2008), p. 28.

2.1.2 Potencial químico

O potencial químico é definido como:

$$\mu_i \equiv \left[\frac{\partial G}{\partial n_i}\right]_{T,P,n_{j\neq i}} \tag{2.4}$$

onde μ_i é o potencial químico de i, G é a energia livre de Gibbs, T é a temperatura, P é a pressão e $n_{j\neq i}$ designa todos os números de moles exceto o referente a i.

O potencial químico relaciona-se a atividade ou concentração e ao coeficiente de atividade da seguinte forma:

$$\mu_i = \mu_i^{\bullet} + RT \ln a_i = \mu_i^{\bullet} + RT \ln \left(\gamma_i \xi_i\right) \tag{2.5}$$

onde μ_i^{\bullet} é o potencial químico de *i* em um estado padrão apropriadamente escolhido, R^2 é a constante universal do gases ideais, a_i é a atividade de *i*, γ_i é o coeficiente de atividade de *i* e ξ_i é uma escala de concentração conveniente.

O potencial químico constitui uma grandeza de suma importância na abordagem em equilíbrio de fases. Como exemplo desta abordagem, tem-se a Figura 16, que representa o equilíbrio sólido-líquido de um eletrólito MX e uma mistura de solventes: água e MEG. Este sistema apresenta quatro fases: três fases líquidas (cor azul) e uma sólida (cor marrom). A condição de equilíbrio para este sistema é a igualdade dos potenciais entre as fases. Logo, o equilíbrio deste sistema pode ser descrito em termos da seguinte equação:

$$\mu_{\rm MX}^{\rm s} = \mu_{\rm MX}^{\rm {\{H_2O\}}} = \mu_{\rm MX}^{\rm {\{MEG\}}} = \mu_{\rm MX}^{\rm {\{H_2O+MEG\}}}$$
(2.6)

onde μ_{MX}^{s} é o potencial químico de MX na fase sólida e $\mu_{MX}^{\{H_2O\}}$, $\mu_{MX}^{\{MEG\}}$ e $\mu_{MX}^{\{H_2O+MEG\}}$ são os potenciais químicos de MX respectivamente nas fases líquidas H₂O, MEG e H₂O + MEG.

MX+H ₂ O	MX+H ₂ O+MEG	MX+MEG
(líquido)	(líquido)	(líquido)
	MX (sólido)	

Figura 16 – Representação do equílibrio de um elétrolito em mistura de solventes.

Fonte: O autor.

 $^{^2}$ $\,$ Para valores de constantes, consulte a Tabela 6 da seção 3.11.

2.1.3 Estado padrão

Um equívoco comum é dizer que o estado padrão do potencial químico para o soluto é o soluto à temperatura e pressão do sistema e à diluição infinita. Isso não é correto, pois, à diluição infinita, o potencial químico do soluto é negativamente infinito (PRAUSNITZ; LICHTENTHALER; AZEVEDO, 1999). O estado padrão do potencial químico para um soluto precisa estar à uma concentração fixa (diferente de zero), conhecida como concentração unitária. Esta é usada por ser o seu logaritmo igual a zero.

O estado padrão do potencial químico não precisa necessariamente ser realizável, mas precisa ser bem definido.

Para soluções concentradas, ou líquidos puros, a fração molar é uma escala de concentração mais conveniente, pois para soluções concentradas os valores tanto para molaridade quanto para a molalidade tendem a serem enormes, e no caso de líquidos puros atingem o infinito. Uma convenção de estado padrão comumente usada é a convenção por *coeficiente de atividade racional simétrico*, onde normaliza-se de forma que os coeficientes de atividade são unitários para componentes puros, assim sendo:

$$\mu_i = \mu_i^0 + RT \ln\left(\gamma_i x_i\right) \tag{2.7}$$

onde μ_i^0 é o potencial químico racional simétrico de *i*.

A Figura 17 ilustra o conceito de solução ideal hipotética. Nela a linha tracejada representa uma solução ideal hipotética e a linha contínua uma solução real. A atividade no estado padrão é dada pela ordenada do ponto A e corresponde a concentração unitária.

Figura 17 – Conceito de solução ideal hipotética.

Fonte: Prausnitz, Lichtenthaler e Azevedo (1999, p. 511), adaptada.

A atividade real do soluto para uma concentração de 1,5 é dada pela ordenada do ponto C, enquanto que na solução ideal hipotética é dada pela ordenada do ponto B. Na solução ideal, a atividade é igual a concentração porque, na solução ideal, o coeficiente de atividade é unitário para todas as concentrações de soluto. Assim, o coeficiente de atividade em soluções reais:

$$\gamma_i = a_i / \xi_i \tag{2.8}$$

é dado pela razão entre os segmentos \overline{CD} e \overline{BD} .

Como as propriedades dos íons não podem ser medidas (reportadas) independentemente dos outros íons em solução, usa-se normalmente a convenção assimétrica baseada na fração molar ou na molalidade (KONTOGEORGIS; FOLAS, 2010). Na convenção por *coeficiente de atividade racional assimétrico* normaliza-se de forma que os coeficientes de atividade são unitários a diluição infinita, ou seja, em solvente puro:

$$\mu_i = \mu_{i,x}^{\nabla} + RT \ln\left(\gamma_{i,x}^* x_i\right) \qquad \text{com} \qquad \gamma_{i,x}^* = \gamma_i / \gamma_i^{\infty} \tag{2.9}$$

onde $\mu_{i,x}^{\nabla}$ é o potencial químico racional assimétrico, $\gamma_{i,x}^*$ é o coeficiente de atividade racional assimétrico e γ_i^{∞} é o coeficiente de atividade em diluição infinita. Na convenção por *coeficiente de atividade molal assimétrico*, normaliza-se como antes, usando, agora, a molalidade adimensionalizada pela razão com a molalidade unitária (b_0^3) , ou seja:

$$\mu_i = \mu_{i,b}^{\nabla} + RT \ln\left(\frac{\gamma_{i,b}^* b_i}{b_0}\right) = \mu_{i,b}^{\nabla} + RT \ln\left(\gamma_{i,b}^* b_i\right) \qquad \text{com} \qquad \gamma_{i,b}^* = \gamma_{i,x}^* x_{\text{solv}} \qquad (2.10)$$

onde $\mu_{i,b}^{\nabla}$ é o potencial químico molal assimétrico, $\gamma_{i,b}^*$ é o coeficiente de atividade molal assimétrico e x_{solv} é a fração molar de solvente na fase líquida.

2.1.4 Coeficiente de atividade médio iônico e molalidade média iônica

Representa-se a dissociação de um eletrólito eletricamente neutro $M_{\nu_+}X_{\nu_-}$ em ν_+ cátions (cada qual com carga z_+) e ν_- ânions (cada qual com carga z_-) da seguinte forma:

$$\mathcal{M}_{\nu_{+}}\mathcal{X}_{\nu_{-}} \rightleftharpoons \nu_{+}\mathcal{M}^{z_{+}} + \nu_{-}\mathcal{X}^{z_{-}}$$

$$(2.11)$$

onde a eletroneutralidade requer que $\nu_+ z_+ + \nu_- z_- = 0$. Por comodidade, abrevia-se $M_{\nu_+} X_{\nu_-}$ para MX.

De Prausnitz, Lichtenthaler e Azevedo (1999), tem-se as definições de coeficiente de atividade médio iônico (γ_{\pm}) e molalidade média iônica (b_{\pm}):

$$\gamma_{\pm} \equiv (\gamma_{+}^{\nu_{+}} \gamma_{-}^{\nu_{-}})^{\frac{1}{\nu}}$$
(2.12)

$$b_{\pm} \equiv (b_{+}^{\nu_{+}} b_{-}^{\nu_{-}})^{\frac{1}{\nu}}$$
(2.13)

onde γ_+ e γ_- são os coeficientes de atividade respectivamente do cátion e do ânion, b_+ e b_- são as molalidades respectivamente do cátion e do ânion, e $\nu = \nu_+ + \nu_-$.

 $^{^3}$ $\,$ Para valores de constantes, consulte a Tabela 6 da seção 3.11.

2.1.5 Leis limitantes

Por lei limitante compreende-se aquela cuja validade (aplicação) encontra-se na região de diluição infinita.

Numa solução ideal, o cálculo das propriedades de mistura requer a composição da mistura e as propriedades dos componentes puros. A solução ideal de um sistema não eletrolítico de acordo com a *Lei de Raoult* para o equilíbrio líquido-vapor (ELV) é:

$$y_i P = x_i P_i^{\text{sat}} \tag{2.14}$$

onde y_i é a fração molar de i na fase vapor e P_i^{sat} é a pressão de vapor de i puro.

Em soluções reais diluídas, com respeito ao soluto, o solvente tende a seguir a *Lei* de Raoult. Uma solução diluída ideal é a solução onde o solvente segue a *Lei de Raoult* e o soluto segue a *Lei de Henry*:

$$y_i P = x_i H_i \tag{2.15}$$

onde H_i é a constante de Henry para i.

Em soluções eletrolíticas reais, as interações entre os íons através de suas cargas, que são chamadas *interações coulombianas*, provocam desvios da idealidade, podendo estes desvios, mesmo a baixas concentrações, serem bastante relevantes. Estas forças de característica eletrostática possuem alcance bem maior que as forças intermoleculares presentes em soluções apolares, cuja significância ocorre apenas a curta distância. Considerando, também, que os íons não são voláteis a pressão atmosférica e a temperatura ambiente, tudo isso conduz a necessidade de uma teoria específica para descrever o comportamento de soluções eletrolíticas. Como os desvios do comportamento ideal estão relacionados as forças eletrostáticas dos íons em solução, tem-se que, uma teoria ou modelo eficiente para soluções eletrolíticas reais, necessita ser capaz de descrever e quantificar a força das *interações coulombianas*, tanto as atrativas quanto as repulsivas. Na 3^a década do século XX, a partir da hipótese de que cada íon, individualmente, esteja cercado por uma *nuvem de íons* de carga oposta, a qual promove um efeito de *blindagem*, Debye e Hückel (1923) formularam uma teoria para soluções eletrolíticas. Nesta teoria, a medida do comprimento desta *blindagem* recebe o nome de comprimento de Debye-Hückel (κ^{-1}), definido como:

$$\kappa^{-1} \equiv \left(\frac{\varepsilon_0 \varepsilon_r k_B T}{2N_A e_0^2 I_c}\right)^{1/2} \tag{2.16}$$

onde ε_0^4 é a permissividade do vácuo, ε_r é a contante dielétrica (também conhecida como permissividade relativa), k_B^4 é a constante de Boltzmann, N_A^4 é o número de Avogadro, e_0^4 é a carga do elétron e I_c é a força iônica molar, definida como:

$$I_c \equiv \frac{1}{2} \sum_i c_i z_i^2 \tag{2.17}$$

⁴ Para valores de constantes, consulte a Tabela 6 da seção 3.11.

sendo z_i a carga de i.

Debye e Hückel (1923) derivaram uma expressão simples para o coeficiente de atividade:

$$\ln \gamma_{i,c} = -\frac{e_0^2 z_i^2}{8\pi\varepsilon_0\varepsilon_r k_B T \kappa^{-1}}$$
(2.18)

onde $\gamma_{i,c}$ é coeficiente de atividade molar de i.

Para soluções aquosas diluídas próximo a temperatura ambiente, não existe diferença numérica significativa entre molalidade e molaridade (PRAUSNITZ; LICHTENTHALER; AZEVEDO, 1999). Assim sendo, lembrando que:

$$c_i = \rho_{\rm solv} b_i \tag{2.19}$$

onde ρ_{solv} densidade absoluta do solvente, pode-se trocar as unidades do coeficiente de atividade e da força iônica na Equação 2.18, resultando em:

$$\ln \gamma_{i,b} = -A_{\gamma} z_i^{2} I_b^{1/2} \tag{2.20}$$

onde $\gamma_{i,b}$ é coeficiente de atividade molal de i, A_{γ} é a constante de Debye-Hückel na forma para coeficiente de atividade, definida como:

$$A_{\gamma} \equiv \frac{\left(2N_{\rm A}\rho_{\rm solv}\right)^{1/2}}{8\pi} \left(\frac{e_0^2}{\varepsilon_0\varepsilon_{\rm r}k_{\rm B}T}\right)^{3/2} \tag{2.21}$$

e I_b é a força iônica molal, definida como:

$$I_b \equiv \frac{1}{2} \sum_i b_i z_i^2 \tag{2.22}$$

Para o eletrólito $M_{\nu_+}X_{\nu_-}$, usando a Equação 2.13, e desprezando o subscrito *b* na Equação 2.20, obtém-se a *Lei de Debye-Hückel*:

$$\ln \gamma_{\pm} = -A_{\gamma} |z_{+} z_{-}| I^{1/2}$$
(2.23)

onde $I = I_b$ é a força iônica.

O comportamento descrito pela *Lei de Raoult* (Equação 2.14) e pela *Lei de Henry* (Equação 2.15) tende a ser o comportamento de soluções reais conforme estas tendam a ser diluídas. Da mesma forma, a *Lei de Debye-Hückel* providencia uma representação satisfatória do comportamento dos coeficientes de atividade em soluções diluídas, sendo limitada para soluções aquosas com força iônica até 0,01 mol/kg. A *Lei de Debye-Hückel Extendida* (GUGGENHEIM, 1935) aumentou o limite de aplicação no cálculo do coeficiente de atividade para soluções aquosas com força iônica até 0,1 mol/kg:

$$\ln \gamma_{\pm} = -\frac{A|z_{\pm}z_{-}|I^{1/2}}{1+aBI^{1/2}}$$
(2.24)

onde $A \in B$ são parâmetros dependentes da temperatura, e a é um parâmetro relacionado ao tamanho dos íons. Outras extensões podem ser obtidas pela adição de mais termos a Equação 2.24 conforme apresentado em Guggenheim (1935).

2.1.6 Energia livre de Gibbs para soluções eletrolíticas reais

Soluções reais podem ser descritas a partir de seus desvios em relação à idealidade por propriedades de excesso. Para uma propriedade \mathcal{M} , temos:

$$\mathcal{M}^{\rm E} \equiv \mathcal{M} - \mathcal{M}^{\rm id} \tag{2.25}$$

onde \mathcal{M}^{E} representa uma propriedade de excesso e \mathcal{M}^{id} representa uma propriedade ideal.

Define-se propriedade parcial molar como:

$$\bar{\mathcal{M}}_{i} \equiv \left[\frac{\partial \mathcal{M}}{\partial n_{i}}\right]_{T,P,n_{j\neq i}}$$
(2.26)

onde \overline{M}_i representa uma propriedade parcial molar de *i*.

De forma análoga a Equação 2.25, define-se propriedade parcial molar de excesso de i ($\bar{\mathcal{M}}_i^{\rm E}$):

$$\bar{\mathcal{M}}_i^{\rm E} \equiv \bar{\mathcal{M}}_i - \bar{\mathcal{M}}_i^{\rm id} \tag{2.27}$$

onde $\bar{\mathcal{M}}_i^{\text{id}}$ representa uma propriedade parcial molar ideal de *i*.

Para a propriedade parcial molar da energia livre de Gibbs, que é função das variáveis operacionais $T \in P$, vale o *Teorema de Euler* ou *característica de aditividade* (PRAUSNITZ; LICHTENTHALER; AZEVEDO, 1999), ou seja:

$$G = \sum_{i} n_i \bar{G}_i \tag{2.28}$$

onde \overline{G}_i é a energia livre de Gibbs parcial molar de i.

Para um sistema aberto, multicomponente e com uma única fase, tem-se:

$$dG = VdP - SdT + \sum_{i} \bar{G}_{i}dn_{i}$$
(2.29)

onde S é a entropia.

Dividindo G por RT e diferenciando em relação à T, tem-se:

$$d\left(\frac{G}{RT}\right) = \frac{1}{RT}dG - \frac{G}{RT^2}dT$$
(2.30)

Dividindo a Equação 2.29 por RT e somando com a equação Equação 2.30, tem-se:

$$d\left(\frac{G}{RT}\right) = \frac{V}{RT}dP - \left(\frac{S}{RT} + \frac{G}{RT^2}\right)dT + \sum_i \frac{\bar{G}_i}{RT}dn_i$$
(2.31)

onde H é a energia livre de Helmholtz.

Como G = H - TS, tem-se, substituindo na Equação 2.30, uma relação fundamental para G bastante útil em termodinâmica de soluções, ou seja:

$$d\left(\frac{G}{RT}\right) = \frac{V}{RT}dP - \frac{H}{RT^2}dT + \sum_i \frac{G_i}{RT}dn_i$$
(2.32)

A partir da energia livre de Gibbs pode-se gerar outras propriedades termodinâmicas, conforme pode ser visto em Prausnitz, Lichtenthaler e Azevedo (1999). Isto tudo está resumido e ilustrado na Figura 18.

Fonte: O autor.

Para soluções aquosas com eletrólitos, como, por exemplo, um sal MX completamente dissociado em água, à pressão e temperatura constantes, a partir da Equação 2.28, da Equação 2.26 e da Equação 2.4, pode-se expressar a energia livre de Gibbs como:

$$G = \sum_{i} n_{i} \mu_{i} = n_{\rm H_{2}O} \mu_{\rm H_{2}O} + n_{\rm MX} \sum_{i} \nu_{i} \mu_{i}$$
(2.33)

onde $n_{\rm H_2O}$ e $n_{\rm MX}$ são os números de moles respectivamente da água e do eletrólito MX, e $\mu_{\rm H_2O}$ é o potencial químico da água.

2.1.7 Fugacidade

Da termodinâmica clássica, a temperatura constante, temos:

$$d\mu_i \equiv RTd\left(\ln \hat{f}_i\right) \quad \Rightarrow \quad \mu_i = \mu_i^{\bullet} + RTd\ln\frac{\hat{f}_i}{f_i^{\bullet}} \tag{2.34}$$

onde \hat{f}_i é a fugacidade de *i* na solução e f_i^{\bullet} é a fugacidade de *i* em um estado padrão apropriadamente escolhido.

A fugacidade de um componente i pode ser expressa, usando convenção simétrica e escala de fração molar, como:

$$\hat{f}_i = x_i \gamma_i f_i^0 \tag{2.35}$$

onde f_i^0 é a fugacidade racional simétrica de i.

A fugacidade de um componente i pode ser expressa, usando convenção assimétrica e escala de fração molar, como:

$$\hat{f}_i = x_i \gamma_i^* H_{i,x} \tag{2.36}$$

onde $H_{i,x}$ é a constante de Henry racional.

A fugacidade de um componente i pode também ser expressa, usando convenção assimétrica e escala de molalidade (b), como:

$$\hat{f}_i = b_i \gamma^*_{i,b} H_{i,b} \tag{2.37}$$

onde $H_{i,b}$ é a constante de Henry molal.

2.2 Dados Experimentais de Solubilidade

A qualidade dos dados experimentais é de suma importância em qualquer trabalho científico. No entanto, nem sempre os dados que necessitamos estão disponíveis na literatura. Embora tenha aumentado nos últimos anos, a quantidade de dados experimentais de solubilidade de sais em mistura de solventes ainda são considerados muito escassos. Mesmo dados experimentais de solubilidade de apenas um sal em um único solvente (como, por exemplo, o MEG), por vezes, são muito difíceis de serem encontrados. Este fato, aliado a uma possível não confiabilidade nos dados oriundos da literatura, justifica, em muitos casos, a necessidade da realização de experimentos objetivando a simples reprodução ou mesmo a coleta integral de novos dados experimentais.

Uma grande compilação de dados experimentais de solubilidade de sais é o banco de dados presente em Linke e Seidell (1958) e Linke e Seidell (1965). Nesta compilação observa-se a carência de dados experimentais para o MEG. Desta compilação, juntamente com Lide (2009), foram coletados dados de solubilidade dos sais KCl e NaCl em água. Estes dados estão resumidos na Tabela 1.

	I		
Sistema	Faixa de Temperatura	Número de Pontos Experimentais	Referência
Água+KCl Água+NaCl	$\begin{array}{c} {\rm de} \ 0 \ {\rm a} \ 100 \ ^{\circ}{\rm C} \\ {\rm de} \ -6 \ {\rm a} \ 454 \ ^{\circ}{\rm C} \\ {\rm de} \ 0 \ {\rm a} \ 100 \ ^{\circ}{\rm C} \\ {\rm de} \ 0 \ {\rm a} \ 450 \ ^{\circ}{\rm C} \end{array}$	12 33 12 25	Lide (2009) Linke e Seidell (1965) Lide (2009) Linke e Seidell (1965)

Tabela 1 – Banco de dados de solubilidade de sal em água a diferentes temperaturas.

Fonte: O autor.

Embora, conforme mencionado anteriormente, dados de solubilidade de sais em misturas de solventes sejam escassos, após um extensa pesquisa, conseguiu-se encontrar na literatura dados de solubilidade para um sal em meio aquoso com um álcool ou glicol. A Tabela 2 apresenta um resumo contendo vários destes dados. Estes estão agrupados numa série sistemática de misturas, seguidas por suas isotermas, número de pontos experimentais e a referência consultada.

Sistema	Temperatura (K)	Número de Pontos Experimentais	Referência
Água+Etanol+KCl	298,15 323,15 348,15	6 6 6	Chiavone-Filho e Rasmussen (1993)
,	$298,15 \mid 323,15 \mid 348,15$	9 9 9	Pinho e Macedo (2005)
Agua+Etanol+NaBr	$298,15 \mid 323,15 \mid 348,15$	9 9 9	Pinho e Macedo (2005)
Agua+Etanol+ NaCl	$298,15 \mid 323,15 \mid 348,15$	9 9 7	Pinho e Macedo (1996)
$Agua+Glicerol+Ba(NO_3)_2$	298,15	6	Kraus, Raridon e Baldwin (1964)
Água+Glicerol+NaCl	298,15	6	Kraus, Raridon e Baldwin (1964)
Água+Gligerol+KCl	298,15	6	Kraus, Raridon e Baldwin (1964)
$Agua+MEG+Ba(NO_3)_2$	298,15	7	Kraus, Raridon e Baldwin (1964)
$Agua+MEG+K_2SO_4$	303,15	9	Trimble (1931)
Água+MEG+KBr	303,15	6	Trimble (1931)
Água+MEG+KCl	298,15 323,15 348,15	7 7 7	Chiavone-Filho e Rasmussen (1993)
0	298,15	1	Isbin e Kobe (1945)
	298,15	7	Kraus, Raridon e Baldwin (1964)
	303,15	6	Trimble (1931)
	298,15	11	Zhou et al. (2010)
Água+MEG+KI	303,15	6	Trimble (1931)
Água+MEG+NaCl	323,15	6	Baldwin, Raridon e Kraus (1969)
	293,15 318,15 348,15	$14 \mid 12 \mid 12$	Figueiredo et al. (2014 (em Publicação))
	363,15 383,15 403,15	12 13 13	
	298,15	1	Isbin e Kobe (1945)
	298,15	7	Kraus, Raridon e Baldwin (1964)
	303,15	6	Trimble (1931)
	298,15	11	Zhou et al. (2010)
Água+Metanol+KCl	$298,15 \mid 323,15$	9 9	Pinho e Macedo (1996)
Água+Metanol+NaBr	$298,15 \mid 323,15$	9 9	Pinho e Macedo (2005)
Água+Metanol+NaCl	$298,15 \mid 323,15$	9 9	Pinho e Macedo (1996)

Tabela 2 – Banco de dados de solubilidade de sal em mistura de solventes.

Fonte: O autor.

Foi observado, na literatura, uma escassez de trabalhos com dados de solubilidade de sal em meio aquoso com MEG. Este fato destaca a importância do trabalho de Figueiredo et al. (2014 (em Publicação)) desenvolvido pelo grupo de pesquisa do FOTEQ.

Outros trabalhos experimentais de sal em meio aquoso com MEG, que reportam outras propriedades que não a solubilidade, foram encontrados na literatura: Tsierkezos e Molinou (1998) estudaram propriedades termodinâmicas como volume de excesso, viscosidade e refração da água com etilenoglicol à diferentes temperaturas; Braun, Persson e Karlsson (2001) estudaram soluções ternárias de MEG+2-amino-2-metil-1-propanol+água em diferentes concentrações obtendo dados de viscosidade e densidade, e Sandengen e Kaasa (2006) estudaram as soluções aquosas de MEG na presença de sais com respeito à condutividade e densidade, no sentido de gerarem curvas de referência para determinar as concentrações a partir dessas duas propriedades para sistemas ortogonais.

2.3 Modelos Termodinâmicos para Eletrólitos

Nesta seção são descritos modelos termodinâmicos que podem ser aplicados a dados de solubilidade de sais em misturas de solventes, seguindo uma ordem de complexidade, ou seja, partindo do modelo ideal, passando pela correlação empírica de Setchenov (chamada também de Setschenow ou Sechenov) e, por último, aplicando a correção das não idealidades através do *Modelo de Pitzer* adaptado para mistura de solventes.

2.3.1 Logaritmos ideal e de excesso da solubilidade de um sal em mistura de solventes

Primeiramente, deve-se definir o *logaritmo ideal da solubilidade de um sal em mistura de solventes* que, para uma mistura binária de solventes, foi definido por meio de regra linear com a composição de cada solvente livre de sal:

$$\left[\ln b_{\rm MX}^{\rm {H_2O+MEG}}\right]^{\rm id} \equiv x'_{\rm {H_2O}} \ln b_{\rm MX}^{\rm {H_2O}} + x'_{\rm MEG} \ln b_{\rm MX}^{\rm {MEG}}$$
(2.38)

onde $\left[\ln b_{\rm MX}^{\rm {H_2O+MEG}}\right]^{\rm id}$ é o logaritmo ideal da molalidade de MX na mistura água e MEG, $x'_{\rm H_2O}$ e $x'_{\rm MEG}$ são as frações molares respectivamente da água e do MEG livres de sal e, $b_{\rm MX}^{\rm {H_2O}}$ e $b_{\rm MX}^{\rm {MEG}}$ são as molalidades do sal MX respectivamente em água e em MEG.

A definição do *logaritmo de excesso da solubilidade de um sal em mistura de solventes* (LORIMER, 1993) permite uma avaliação simplificada do comportamento das soluções aquosas de MEG e com um sal. Isto ocorre, pois, quando considera-se solução ideal não é necessário usar-se modelo de energia livre de excesso. Conforme visto na Equação 2.25, define-se o logaritmo de excesso da solubilidade da seguinte forma:

$$\left[\ln b_{\rm MX}^{\rm {H_2O+MEG}}\right]^{\rm E} \equiv \ln b_{\rm MX}^{\rm {H_2O+MEG}} - \left[\ln b_{\rm MX}^{\rm {H_2O+MEG}}\right]^{\rm id}$$
(2.39)

onde $\left[\ln b_{\rm MX}^{\rm \{H_2O+MEG\}}\right]^{\rm E}$ é o logaritmo de excesso da molalidade de MX na mistura água e MEG.

Essa abordagem ideal pode representar surpreendentemente bem, e de maneira bastante simplificada, a influência do solvente na solubilidade do sal. Ela requer apenas o conhecimento das solubilidades do sal nos solventes puros e descreve nestes extremos os valores de maneira plena. Vale ressaltar que as soluções de água e MEG formam soluções ideais (CHIAVONE-FILHO; PROUST; RASMUSSEN, 1993) para o ELV.

2.3.2 Equação de Setchenov

O efeito linear do solvente sobre a solubilidade do sal numa escala logarítmica pode ser mensurado pela *Equação de Setchenov* (Equação 2.40), que expressa o efeito *salting-out* (LEE, 1997), que é justamente o oposto do que ocorre no processo de regeneração do MEG, mas que acompanha o mesmo fenômeno físico.

$$\ln b_{\rm MX}^{\rm {H_2O+MEG}} = \ln b_{\rm MX}^{\rm {H_2O}} + k_{\rm S} x'_{\rm MEG}$$
(2.40)

onde $b_{\rm MX}^{\rm (H_2O+MEG)}$ é a molalidade de MX na mistura água e MEG, e $k_{\rm S}$ é a constante de Setchenov. Aplicando uma correlação equivalente entre o produto de solubilidade de um componente em água e o mesmo em uma mistura de solventes (água+MEG) usando essa equação de Setchenov, pode-se estimar o produto de solubilidade nesse novo meio solvente (OLIVEIRA et al., 2010).

2.3.3 Modelo de Pitzer

Na termodinâmica de soluções eletrolíticas é comum expressar os modelos de correção das não idealidades pelo coeficiente osmótico (solvente) ou pelo coeficiente de atividade (soluto). A definição do coeficiente osmótico é dada pela Equação 2.41.

$$\phi \equiv \frac{-\ln a_{\rm H_2O}}{M_{\rm H_2O}\sum_i b_i} \tag{2.41}$$

onde ϕ é o coeficiente osmótico, $a_{\rm H_2O}$ é a atividade da água e $M_{\rm H_2O}^5$ é a massa molar da água.

O *Modelo de Pitzer* foi desenvolvido a partir da teoria de Debye-Hückel, para eletrólitos em meio aquoso, pela extensão por coeficientes do virial. Este é apresentado tanto para o coeficiente osmótico como para o coeficiente de atividade. O *Modelo de Pitzer expresso para o coeficiente osmótico* é:

$$\phi - 1 = |z_M z_X| f_{MX}^{\phi} + b_{MX} \frac{2\nu_M \nu_X}{\nu} B_{MX}^{\phi} + b_{MX}^2 \frac{2(\nu_M \nu_X)^{3/2}}{\nu} C_{MX}^{\phi}$$
(2.42)

onde $z_{\rm M}$ e $z_{\rm X}$ são respectivamente as cargas do cátion e do ânion, $f_{\rm MX}^{\phi}$ é a função de Debye-Hückel na forma para o coeficiente osmótico, isto é:

$$f_{\rm MX}^{\phi} = -A_{\phi} \frac{I^{1/2}}{1 + \ell I^{1/2}} \tag{2.43}$$

sendo que \mathscr{C}^5 é uma constante do modelo e A_{ϕ} , que é a constante de Debye-Hückel na forma para coeficiente osmótico, juntamente com I são expressos por:

$$A_{\phi} = \frac{A_{\gamma}}{3} \tag{2.44}$$

$$I = \frac{|z_M z_X|}{2} \frac{b_{\rm MX}}{b_0} \nu \tag{2.45}$$

e, prosseguindo, b_{MX} é a molalidade de MX, ν_{M} e ν_{X} são os coeficientes estequiométricos respectivamente do cátion e do ânion, ν é coeficiente estequiométrico total, dado por:

$$\nu = \nu_M + \nu_X \tag{2.46}$$

 $^{^5}$ $\,$ Para valores de constantes, consulte a Tabela 6 da seção 3.11.

e, continuando, B_{MX}^{ϕ} e C_{MX}^{ϕ} são respectivamente o segundo e o terceiro coeficientes do virial nas formas para coeficiente osmótico, sendo C_{MX}^{ϕ} um parâmetro do modelo, com B_{MX}^{ϕ} expresso como:

$$B_{\rm MX}^{\phi} = \beta_{\rm MX}^{(0)} + \beta_{\rm MX}^{(1)} \exp\left(-\alpha I^{1/2}\right)$$
(2.47)

sendo que $\beta_{MX}^{(0)}$ e $\beta_{MX}^{(1)}$ são parâmetros do modelo, e, finalmente, α^6 que é uma constante do modelo.

O Modelo de Pitzer expresso para o coeficiente de atividade é:

$$\ln \gamma_{\pm} = |z_M z_X| f_{\rm MX}^{\gamma} + b_{\rm MX} \frac{2\nu_M \nu_X}{\nu} B_{\rm MX}^{\gamma} + b_{\rm MX}^2 \frac{2(\nu_M \nu_X)^{3/2}}{\nu} C_{\rm MX}^{\gamma}$$
(2.48)

onde $f_{\rm MX}^{\gamma}$ é a função de Debye-Hückel na forma para o coeficiente de atividade, isto é:

$$f_{\rm MX}^{\gamma} = -A_{\phi} \left[\frac{2}{\vartheta} \ln \left(1 + \vartheta I^{1/2} \right) + \frac{I^{1/2}}{1 + \vartheta I^{1/2}} \right]$$
(2.49)

e, continuando, B_{MX}^{γ} e C_{MX}^{γ} são respectivamente o segundo e o terceiro coeficientes do virial na forma para coeficiente de atividade, expressos como:

$$B_{\rm MX}^{\gamma} = 2\beta_{\rm MX}^{(0)} + \frac{2\beta_{\rm MX}^{(1)}}{\alpha^2 I} \left[1 - \left(1 + \alpha I^{1/2} - \frac{\alpha^2 I}{2} \right) \exp\left(-\alpha I^{1/2} \right) \right]$$
(2.50)

$$C_{MX}^{\gamma} = \frac{3}{2} C_{MX}^{\phi}$$
 (2.51)

Seguindo a abordagem de Lorimer (1993), que usa a teoria de McMillan-Mayer, é possível corrigir as não idealidades da fase líquida com uma equação de coeficiente de atividade, como o *Modelo de Pitzer*. Este modelo foi desenvolvido para o solvente água e, assim sendo, a aplicação dele em mistura de solventes requer uma estratégia para estimar os parâmetros de interação entre solvente orgânico e sal.

No *Modelo de Pitzer*, para expressar-se o efeito térmico, os parâmetros devem ser considerados dependentes da temperatura (ZEMAITIS JR. et al., 1986).

Lorimer (1993) aplicou o *Modelo de Pitzer* para misturas de solventes determinando o parâmetro $\beta_{MX}^{(1)}$ como função da constante dielétrica e da composição da mistura de solventes livre de sal. Essa mesma abordagem foi aplicada nesta tese de doutorado e será descrita no Capítulo 3.

2.4 Outros Modelos Termodinâmicos

Várias teses de doutorado no tema de modelagem termodinâmica de solubilidade para sistemas aquosos com eletrólitos podem ser encontradas na Universidade Técnica da

⁶ Para valores de constantes, consulte a Tabela 6 da seção 3.11.

Dinamarca (CARDOSO, 1988; CHIAVONE-FILHO, 1993; NICOLAISEN, 1994; THOM-SEN, 1997). Nestes trabalhos pode-se observar o potencial de aplicação dos modelos de coeficiente de atividade para sistemas aquosos com sais e MEG. Esta abordagem, entretanto, requer informações experimentais para a estimação dos parâmetros dos respectivos modelos e, por conta da escassez de dados experimentais, há necessidade de desenvolvimento de modelos para as misturas específicas, como é o caso de sistemas aquosos com MEG e sais.

Renon (1996) e Anderko, Wang e Rafal (2002) apresentam resumos de diferentes modelos utilizados para soluções eletrolíticas com mistura de solventes, com proposta de classificação, tipo de equilíbrio, estados de referência e algumas hipóteses simplificadoras adotadas na modelagem. Observa-se que novos modelos são obtidos através de combinações de modelos anteriores para representar contribuições de interações entre espécies, de longe, médio (interações específicas) e curto alcance.

Liu e Watanasiri (1996) e Chen e Song (2004) utilizaram o modelo NRTL (*Non-Random Two Liquid*) para representar as interações de curto alcance e o modelo de Pitzer-Debye-Hückel (PDH) para as interações de longo alcance.

Pinho e Macedo (1996), Iliuta, Thomsen e Rasmussen (2000), Wang, Anderko e Young (2002), Thomsen, Iliuta e Rasmussen (2004), Wang et al. (2006), Kosinski et al. (2007), (FØSBOL; THOMSEN; STENBY, 2009) utilizaram o modelo UNIQUAC (*UNIversal QUAsiChemical*) para representar as interações de curto alcance e o modelo PDH para as interações de longo alcance. Observa-se em alguns dos trabalhos citados, o uso da equação de estado cúbica de Soave-Redlich-Kwong (SRK) para o ELV e a descrição de interações específicas entre íons realizadas por uma expansão de virial.

Grenthe e Plyasunov (1997) fizeram uma comparação entre a modelo SIT (*Specific ion Interaction Theory*) de Brønsted-Guggenheim-Scatchard e o modelo PDH.

Dahl e Macedo (1992) utilizaram o modelo de contribuição de grupos UNIFAC (UNIQUAC Functional-group Activity Coefficients) juntamente com a equação de estado cúbica SRK para ELV e equilíbrio líquido-líquido (ELL) de misturas com eletrólitos fortes.

Thomsen (1997) desenvolveu um modelo UNIQUAC estendido para soluções aquosas com eletrólitos baseado nas seguintes propriedades de equilíbrio e calorimétricas: atividade, coeficiente osmótico, grau de dissociação, densidade, calor de diluição e de solução e capacidade calorífica. A partir destes novos parâmetros, foram elaborados diagramas de fases e simulações de processos, seguidas de otimização. O trabalho de Thomsen (1997) é uma importante referência, mas não se aplica diretamente a mistura de solventes, foco desta tese de doutorado.

Em Lorimer (1993) é apresenta uma modelagem não convencional para sistemas eletrolíticos com mistura de solventes, partindo-se do desenvolvimento baseado em soluções

aquosas. Os modelos derivados do *Modelo de Pitzer* são de utilização convencional na abordagem de soluções aquosas eletrolíticas (ZEMAITIS JR. et al., 1986). Estes modelos são encontrados nas versões mais atualizadas de simuladores de processos como o AspenHYSYS[®] (aspentech.com). Entretanto, como parâmetros de íons e moléculas orgânicas ou grupos funcionais são raros e necessários nestes modelos, temos que este fato compromete as simulações de sistemas aquosos eletrolíticos com misturas de solventes.

Métodos de cálculo de equilíbrio de fases e fundamentação são encontrados em livros textos da área (SMITH; VAN NESS; ABBOTT, 2005; WALAS, 1985; PITZER, 1995; PRAUSNITZ; LICHTENTHALER; AZEVEDO, 1999; SANDLER, 1993).

Os modelos de coeficiente de atividade desenvolvidos para soluções não eletrolíticas, como UNIQUAC (ABRAMS; PRAUSNITZ, 1975), têm sido extensivamente aplicados. Estes modelos se caracterizam por uma forte flexibilidade matemática permitindo correlação de dados de equilíbrio para misturas complexas e também possuem fundamentação teórica.

O modelo UNIQUAC+Debye-Hückel foi aplicado para a modelagem de solubilidade de sais em mistura de solventes por Chiavone-Filho e Rasmussen (2000). Contudo, com base na literatura, é mais adequado o uso de modelos normalizados com a convenção assimétrica para sistemas com eletrólitos. Portanto, o modelo de Pitzer (1973) com a modelagem de solubilidade de excesso apresentada por Lorimer (1993) (que aplica a abordagem de McMillan-Mayer) apresenta-se mais coerente do ponto de vista de termodinâmica molecular e projeto de processos.

2.5 Ferramentas Computacionais

O uso de ferramentas computacionais para a resolução de problemas em equilíbrio de fases de sistemas com eletrólitos se faz necessário devido à quantidade enorme de cálculos e a complexidade destes. A utilização destas ferramentas acompanhou o desenvolvimento das linguagens de computação, bem como dos programas computacionais com aplicações específicas, onde, hoje, cada qual apresenta suas vantagens:

- a) A linguagem de programação Fortran (gcc.gnu.org/Fortran) apresenta uma grande quantidade de bibliotecas matemáticas já consolidadas, como por exemplo, as bibliotecas numéricas e estatísticas IMSL (*International Mathematics* and Statistics Library) (roguewave.com);
- b) A linguagem de programação C++ (gcc.gnu.org/C++) continua sendo a mais utilizada no desenvolvimento final de programas ou aplicações. Nela, a programação de alto nível, simplificada e rápida, permite excelentes resultados no nível de interação com o usuário;
- c) Destacam-se, também, os programas desenvolvidos para atividades específicas

de simulação de processos como, por exemplo, o conhecido AspenHYSYS[®] (aspentech.com), que apresenta um conjunto de ferramentas, inclusive gráficas que permitem reproduzir por simulação muitos dos processos encontrados na indústria de petróleo e gás natural;

- d) Outro destaque, são os programas com uma grande variedade de pacotes para aplicações específicas em diferentes áreas, indo desde pacotes matemáticos a pacotes de engenharia, como por exemplo: o MATLAB[®] (mathworks.com/MATLAB) e Simulink[®] (mathworks.com/Simulink), ou o seu clone livre: o Scilab (scilab.org);
- e) Existem linguagens de programação, ditas interpretadas, cujo código não é executado diretamente pelo sistema operacional e sim indiretamente por um programa chamado interpretador. Este fato implica em perda de desempenho em relação a outras linguagens que, após o seu código ser compilado, são executadas diretamente pelo sistema operacional. Porém, hoje, com os computadores cada vez mais rápidos, este fato torna-se cada vez menos relevante, implicando numa demanda menor de otimização do código para a máquina objetivando ganho de velocidade. Em contrapartida, cada vez é dado mais espaço em relação à otimização do código para o programador, cujo objetivo é uma melhor interação com o usuário. Neste aspecto, destaca-se a linguagem de programação Python (python.org), cuja otimização em relação ao programador permite até a mudança dinâmica da programação, ou seja, em tempo de execução. O destaque do Python em relação a outras linguagens também é evidente pela sua característica de ser multiplataforma, permitindo, sem grandes mudanças, a execução do mesmo código em diferentes sistemas operacionais como, por exemplo: Windows[®] (windows.microsoft.com), Mac OS X[®] (apple.com) e Ubuntu[®] (ubuntu.com). Também possui licença livre, o que é uma tendência mundial, apresenta bibliotecas numéricas avançadas, como o NumPy (numpy.org), científicas, como o SciPy (scipy.org), gráficas, como o matplotlib (matplotlib.org), de excepcional qualidade, além do desenvolvimento em programação visual, por meio do PySide (qt-project.org), ser simples e totalmente multiplataforma.
- f) No desenvolvimento de aplicativos, destaca-se o Ambiente de Desenvolvimento Integrado (IDE) Eclipse (eclipse.org), que através de *plugins*, ou seja, módulos que ampliam as funções do aplicativo, consegue suportar as mais diversas linguagens de programação, além de permitir depuração e otimização, suporte a idiomas, gerência de versões, entre outras funcionalidades.

CAPÍTULO 3 METODOLOGIA
3 METODOLOGIA

Neste capítulo, inicialmente explica-se sobre a estratégia utilizada na abordagem desta tese de doutorado. Em seguida, mostra-se como foram selecionados os sistemas estudados e apresenta-se os dados de equilíbrio que foram coletados e utilizados. Continua-se mostrando a forma de cálculo de diversas grandezas. A seguir, explica-se os algoritmos de cálculos usados pelo programa gerado (*JAFOSSMS - Solubilidade de Sais em Mistura de Solventes*). E por último descreve-se a implementação e forma de operação deste programa. A Figura 19 ilustra de forma resumida a metodologia empregada neste trabalho de tese de doutorado.

Figura 19 – Fluxograma simplificado da metodologia empregada nesta tese de doutorado.

Fonte: O autor.

Como pode ser observado na Figura 19, a primeira etapa consistiu em definir quais os sistemas a serem estudados. Para tanto, considerou-se, entre outros critérios, a disponibilidade de dados experimentais na literatura. Estes dados de solubilidade foram coletados juntamente com outros necessários a implementação, na etapa seguinte, dos métodos de cálculos para os modelos escolhidos e propostos. Após a transcrição do modelo em código computacional foram feitas simulações e testes para verificação da reprodutividade do modelo implementado em relação a conjuntos novos de dados experimentais. Tudo será detalhado nas próximas seções.

3.1 Estratégia para Abordagem do Trabalho

Em modelagem e simulação a partir de dados experimentais, destaca-se a estratégia adotada pela Universidade Técnica da Dinamarca, aqui ilustrada na Figura 20. Neste trabalho de tese de doutorado procurou-se utilizar esta mesma ideia. Esta, parte da classificação de três tipos de atividades necessárias ao êxito do trabalho, a saber:

- a) DADOS: dados experimentais;
- b) MODELOS: modelos e teorias;
- c) MÉTODOS: métodos e ferramentas de cálculo.

Figura 20 – Estratégia de abordagem do trabalho desta tese de doutorado.

Fonte: O autor.

Os dados experimentais, que na Figura 20 estão, de propósito, em nível de destaque (mais elevados), reforçam a importância da qualidade destes e a prioridade que deve ser-lhes dada, considerando-os como fatores representativos da realidade do problema a ser abordado. Em seguida tem-se os modelos e teorias, que tanto podem ser inéditos como desenvolvidos (ou aperfeiçoados) a partir de conceitos já existentes, cujo objetivo é representar o melhor possível os dados experimentais (a realidade). Em igual nível tem-se os métodos e ferramentas de cálculo cujo objetivo é quantificar numericamente resultados advindos dos modelos e teorias de modo a compará-los com os dados experimentais. Isto é obtido por métodos numéricos e ferramentas computacionais que resolvem o modelo ou teoria propostos.

3.2 Seleção dos Sistemas

No processo de regeneração do MEG, conforme foi apresentado no Capítulo 1, podem ocorrer problemas operacionais por formação de precipitados em locais indesejáveis nos equipamentos. O conhecimento sobre as condições de formação destes precipitados é essencial para poder evitá-los. Portanto, o estudo do equilíbrio de fases em sistemas com espécies iônicas presentes na água de produção faz-se extremamente necessário. Para isto poder ser feito é preciso, primeiramente, o conhecimento da composição da água de produção. A Tabela 3 apresenta as características da água de formação representativa do campo de Mexilhão, coletada do poço 3-MXL-3-SPS.

Tabela 3 – Características	da	água	de
formação do re	serv	atório	do
campo de Mexi	lhão		

Parâmetro	Valor
Na ⁺	52.000 mg/L
K^+	3.400 mg/L
Mg^{2+}	67 mg/L
Ca^{2+}	31.000 mg/L
Ba^{2+}	670 mg/L
Sr^{2+}	4.300 mg/L
Ferro total	1.9 mg/L
Cl^{-}	139.500 mg/L
Salinidade (NaCl)	230.175 mg/L
SO^{4-}	< 10 mg/L
Br^-	1.540 mg/L
Alcalinidade Total (HCO_3^-)	-
pH	8,1

Fonte: Petrobras (2007, p. 110).

Dentre as espécies iônicas presentes na água de formação, considerando que a água de produção possui composição semelhante a de formação e, também, em razão da maior disponibilidade de dados experimentais na literatura e a relevância destes íons, optou-se por selecionar, os seguintes sistemas para estudo através de modelagem e simulação com respeito ao comportamento da solubilidade dos sais e outras propriedades:

- a) Água+MEG+NaCl;
- b) Água+MEG+KCl.

Dados de ELV de sistemas aquosos com alcoóis (metanol e etanol) na presença de um eletrólito forte, a saber: o cloreto de sódio (NaCl), também foram estudados neste trabalho de tese de doutorado, em termos de modelagem e simulação, gerando um artigo (OLIVEIRA et al., 2014). Este artigo foi incluído no Apêndice A e o programa desenvolvido para ele, *VLE Regression*, é apresentado no Apêndice C.

3.3 Dados Experimentais Utilizados

Para realização da modelagem e simulação, após a seleção dos sistemas a serem estudados, ou seja: Água+MEG+NaCl e Água+MEG+KCl, escolheu-se os dados experimentais utilizados nesta tese de doutorado a partir da Tabela 1 e da Tabela 2, apresentadas na seção 2.2. Os critérios utilizados nesta seleção foram:

- a) a limitação da faixa de temperatura para a faixa de 10 °C a 150 °C;
- b) a seleção de dados apenas dos sistemas escolhidos.

Os dados de solubilidade de sais em água, usados neste trabalho de tese de doutorado, obtidos a partir da Tabela 1 pela limitação da faixa de temperatura, são apresentados na Tabela 4.

Sistema	Faixa de Temperatura	Número de Pontos Experimentais	Referência
Água+KCl	de 10 a 100 °C de 10 a 150 °C	11 16	Lide (2009) Linke e Seidell (1965)
Água+NaCl	de 10 a 100 °C de 10 a 150 °C	11 15	Lide (2009) Linke e Seidell (1965)

Tabela 4 – Dados experimentais de solubilidade de sal em água a diferentes temperaturas usados nesta tese de doutorado.

Fonte: O autor.

Da mesma forma, os dados de solubilidade de sais em mistura de solventes (água e MEG), usados nesta tese de doutorado, obtidos a partir da Tabela 2 pela limitação aos sistemas escolhidos, são apresentados na Tabela 5.

Sistema	Temperatura (K)	Número de Pontos Experimentais	Referência
Água+MEG+KCl	298,15 323,15 348,15 298,15 298,15 303,15 298,15	7 7 7 1 7 6 11	Chiavone-Filho e Rasmussen (1993) Isbin e Kobe (1945) Kraus, Raridon e Baldwin (1964) Trimble (1931) Zhou et al. (2010)
Água+MEG+NaCl	203,15 293,15 318,15 348,15 363,15 383,15 403,15 298,15 298,15 303,15 298,15	$ \begin{array}{c} 6 \\ 14 \mid 12 \mid 12 \\ 12 \mid 13 \mid 13 \\ 1 \\ 7 \\ 6 \\ 11 \end{array} $	Baldwin, Raridon e Kraus (1969) Figueiredo et al. (2014 (em Publicação)) Isbin e Kobe (1945) Kraus, Raridon e Baldwin (1964) Trimble (1931) Zhou et al. (2010)

Tabela 5 – Dados experimentais de solubilidade de sal em mistura de solventes usados nesta tese de doutorado.

3.4 Sistema Internacional de Unidades

Neste trabalho de tese de doutorado, optou-se pela uniformização de todas as equações e seus parâmetros para o Sistema Internacional de Unidades (SI) (BIPM, 2006). Portanto, todas as grandezas presentes neste trabalho, cujas unidades não sejam declaradas explicitamente, estão no SI.

3.5 Molalidade e Fração Molar

3.5.1 Cálculo da molalidade do sal na mistura de solventes

A molalidade do sal na mistura de solventes $(b_{\text{MEG}}^{\{\text{H}_2\text{O}+\text{MEG}\}})$ foi calculada em função das propriedades dos dados experimentais consultados. Assim sendo, em função da fração mássica de MX (w_{MX}) , tem-se:

$$b_{\rm MEG}^{\rm {H_2O+MEG}} = \frac{w_{\rm MX}/M_{\rm MX}}{1 - w_{\rm MX}}$$
(3.1)

onde $M_{\rm MX}$ é a massa molar de MX. E, em função das massas respectivamente de MX $(m_{\rm MX})$ e de água e MEG $(m_{\rm H_2O+MEG})$, tem-se:

$$b_{\rm MEG}^{\{\rm H_2O+MEG\}} = \frac{m_{\rm MX}/M_{\rm MX}}{m_{\rm H_2O+MEG}}$$
 (3.2)

3.5.2 Cálculo da fração molar de MEG livre de sal na mistura de solventes

A fração molar de MEG livre de sal na mistura de solventes (x'_{MEG}) foi calculada em função das propriedades dos dados experimentais consultados. Assim sendo, em função das massas respectivamente do MEG (m_{MEG}) e da água $(m_{\text{H}_2\text{O}})$, tem-se:

$$x'_{\rm MEG} = \frac{m_{\rm MEG}/M_{\rm MEG}}{m_{\rm H_2O}/M_{\rm H_2O} + m_{\rm MEG}/M_{\rm MEG}}$$
(3.3)

onde M_{MEG}^{1} e $M_{\text{H}_{2}\text{O}}$ são as massas molares respectivamente do MEG e da água. E, em função da fração mássica de água livre de sal na mistura de solventes $(w'_{\text{H}_{2}\text{O}})$, tem-se:

$$x'_{\rm MEG} = \frac{\left(1 - w'_{\rm H_2O}\right)/M_{\rm MEG}}{w'_{\rm H_2O}/M_{\rm H_2O} + \left(1 - w'_{\rm H_2O}\right)/M_{\rm MEG}}$$
(3.4)

e, continuando, em função da fração mássica de MEG livre de sal na mistura de solventes (w'_{MEG}) , tem-se:

$$x'_{\rm MEG} = \frac{w'_{\rm MEG}/M_{\rm MEG}}{(1 - w'_{\rm MEG})/M_{\rm H_2O} + w'_{\rm MEG}/M_{\rm MEG}}$$
(3.5)

e, por último, em função das frações mássicas respectivamente de água $(w_{\rm H_2O})$ e de MEG $(w_{\rm MEG})$ tem-se:

$$x'_{\rm MEG} = \frac{w_{\rm MEG}/M_{\rm MEG}}{(1 - w_{\rm MEG} - w_{\rm MX})/M_{\rm H_2O} + w_{\rm MEG}/M_{\rm MEG}}$$
(3.6)

 $^{^1}$ $\,$ Para valores de constantes, consulte a Tabela 6 da seção 3.11.

3.6 Constantes Dielétricas

3.6.1 Cálculo das constantes dielétricas dos solventes puros

As constantes dielétricas dos solventes puros ($\varepsilon_{r,H_{2}O} \in \varepsilon_{r,MEG}$) foram calculadas em função da temperatura (T) pelas seguintes equações (ÅKERLÖF, 1932):

$$\varepsilon_{\rm r \ H_{2}O} = 10^{1,9051-0,00205(T-293,15)} \tag{3.7}$$

$$\varepsilon_{\rm r\,MEG} = 10^{1,5872 - 0,00224(T - 293,15)} \tag{3.8}$$

onde ε_{r,H_2O} e $\varepsilon_{r,MEG}$ são as constantes dielétricas respectivamente da água e do MEG.

3.6.2 Cálculo da constante dielétrica da mistura de solventes

A constante dielétrica da mistura água e MEG (ε_{r,H_2O+MEG}) foi calculada em função da temperatura (T), da fração molar de MEG livre de sal na mistura de solventes (x'_{MEG}) e das constantes dielétricas dos solventes puros na mesma temperatura (ε_{r,H_2O} e $\varepsilon_{r,MEG}$) pela equação (JOUYBAN; SOLTANPOUR; CHAN, 2004):

$$\varepsilon_{\rm r,H_2O+MEG} = \exp\left\{ \begin{array}{l} x'_{\rm H_2O} \ln \varepsilon_{\rm r,H_2O} + x'_{\rm MEG} \ln \varepsilon_{\rm r,MEG} + \\ + \frac{x'_{\rm H_2O} x'_{\rm MEG}}{T} \left[153, 6 + 57, 3 \left(x'_{\rm H_2O} - x'_{\rm MEG} \right) \right] \right\}$$
(3.9)

onde $\varepsilon_{\rm r,H_2O+MEG}$ é a constante dielétrica da mistura água e MEG, e $x'_{\rm H_2O} = 1 - x'_{\rm MEG}$.

3.7 Densidades Absolutas

3.7.1 Cálculo das densidades absolutas dos solventes puros

As densidades absolutas dos solventes puros ($\rho_{\text{H}_{2}\text{O}} \in \rho_{\text{MEG}}$) foram calculadas em função da temperatura (T) pelas equações (GREEN; PERRY, 2007):

$$\rho_{\rm H_{2O}} = \left(17863 + 58606\tau^{0,35} - 95396\tau^{2/3} + 213890\tau - 141260\tau^{4/3}\right) M_{\rm H_{2O}} \tag{3.10}$$

$$\rho_{\rm MEG} = \frac{1315}{0,25125^{1+(1-T/720)^{0,21868}}} M_{\rm MEG}$$
(3.11)

sendo $\tau = 1 - T/647,096$.

3.7.2 Cálculo das densidades absolutas da mistura de solventes

A densidade absoluta da mistura água e MEG (ρ_{H_2O+MEG}) foi calculada em função das densidades dos solventes puros (ρ_{H_2O} e ρ_{MEG}) e da fração molar de MEG livre de

sal na mistura de solventes (x'_{MEG}) , assumindo regra de mistura ideal com o seu inverso (volume específico), pela equação:

$$\rho_{\rm H_2O+MEG} = \frac{1}{w'_{\rm H_2O}/\rho_{\rm H_2O} + w'_{\rm MEG}/\rho_{\rm MEG}}$$
(3.12)

sendo
$$x'_{\rm H_2O} = 1 - x'_{\rm MEG}, w'_{\rm MEG} = \frac{x'_{\rm MEG}M_{\rm MEG}}{x'_{\rm H_2O}M_{\rm H_2O} + x'_{\rm MEG}M_{\rm MEG}} e w'_{\rm H_2O} = 1 - w'_{\rm MEG}.$$

3.8 Coeficiente de Atividade

3.8.1 Cálculo do coeficiente de atividade do sal pelo Modelo de Pitzer

O Modelo de Pitzer (PITZER, 1973) conforme apresentado na subseção 2.3.3 foi empregado para o cálculo do coeficiente de atividade do sal (γ_{MX}). Sendo assim, este foi calculado em função da molalidade do sal (b_{MX}), da constante de Debye-Hückel na forma para coeficiente osmótico (A_{ϕ}) e dos parâmetros do modelo ($\beta_{MX}^{(0)}$, $\beta_{MX}^{(1)}$ e C_{MX}^{ϕ}), ou seja:

$$\ln \gamma_{\rm MX} = |z_M z_X| f_{\rm MX}^{\gamma} + b_{\rm MX} \frac{2\nu_M \nu_X}{\nu} B_{\rm MX}^{\gamma} + b_{\rm MX}^2 \frac{2\left(\nu_M \nu_X\right)^{3/2}}{\nu} C_{\rm MX}^{\gamma}$$
(3.13)

$$f_{\rm MX}^{\gamma} = -A_{\phi} \left[\frac{2}{\vartheta} \ln \left(1 + \vartheta I^{1/2} \right) + \frac{I^{1/2}}{1 + \vartheta I^{1/2}} \right]$$
(3.14)

$$B_{\rm MX}^{\gamma} = 2\beta_{\rm MX}^{(0)} + \frac{2\beta_{\rm MX}^{(1)}}{\alpha^2 I} \left[1 - \left(1 + \alpha I^{1/2} - \frac{\alpha^2 I}{2} \right) \exp\left(-\alpha I^{1/2} \right) \right]$$
(3.15)

$$C^{\gamma}_{MX} = \frac{3}{2} C^{\phi}_{MX} \tag{3.16}$$

$$I = \frac{|z_M z_X|}{2} \frac{b_{\rm MX}}{b_0} \nu \tag{3.17}$$

$$\nu = \nu_{\rm M} + \nu_{\rm X} \tag{3.18}$$

Neste trabalho de tese de doutorado, o *Modelo de Pitzer* foi estendido para misturas água e MEG. Bastou para isso, que a molalidade do sal (b_{MX}) , a constante de Debye-Hückel (A_{ϕ}) e os parâmetros do modelo $(\beta_{MX}^{(0)}, \beta_{MX}^{(1)} \in C_{MX}^{\phi})$ fossem referentes a mistura água e MEG, e não referentes somente a água (como no modelo original).

3.8.2 Cálculo do coeficiente de atividade do sal em MEG

O coeficiente de atividade do sal em MEG $(\gamma_{MX}^{\{MEG\}})$ foi calculado em função da temperatura (T), do coeficiente de atividade do sal em água $(\gamma_{MX}^{\{H_2O\}})$ e das molalidades do sal em água $(b_{MX}^{\{H_2O\}})$ e em MEG $(b_{MX}^{\{MEG\}})$, utilizando-se a energia livre de Gibbs de transferência da água para o MEG $(\Delta_{tr}G_{H_2O\to MEG}^0)$, pela equação (LORIMER, 1993):

$$\ln \gamma_{\rm MX}^{\rm \{MEG\}} = \ln \gamma_{\rm MX}^{\rm \{H_2O\}} + \ln \left(\frac{b_{\rm MX}^{\rm \{H_2O\}}}{b_{\rm MX}^{\rm \{MEG\}}}\right) - \frac{\Delta_{\rm tr} G_{\rm H_2O \to MEG}^0}{\nu RT}$$
(3.19)

 $^{^2}$ $\,$ Para valores de constantes, consulte a Tabela 6 da seção 3.11.

3.8.3 Constante de Debye-Hückel

3.8.3.1 Cálculo da constante de Debye-Hückel para a água

A constante de Debye-Hückel da água na forma para coeficiente osmótico (A_{ϕ,H_2O}) foi calculada em função da temperatura (T) pela equação (CHEN et al., 1982): 3.20

$$A_{\phi,\mathrm{H}_{2}\mathrm{O}} = -61,44534 \exp\left(\frac{T-273,15}{273,15}\right) + 2,864468 \exp\left[2\left(\frac{T-273,15}{273,15}\right)\right] + 183,5379 \ln\left(\frac{T}{273,15}\right) - 0,6820223 \left(T-273,15\right) + 0,0007875695 \left(T^{2}-273,15^{2}\right) + 58,95788 \left(\frac{273,15}{T}\right)$$
(3.20)

3.8.3.2 Cálculo da constante de Debye-Hückel para o MEG

A constante de Debye-Hückel do MEG na forma para coeficiente osmótico $(A_{\phi,\text{MEG}})$ foi calculada em função das constante de Debye-Hückel da água na forma para coeficiente osmótico $(A_{\phi,\text{H}_2\text{O}})$, densidade absoluta $(\rho_{\text{H}_2\text{O}})$ e constante dielétrica $(\varepsilon_{\text{r,H}_2\text{O}})$ da água, e das densidade absoluta (ρ_{MEG}) e constante dielétrica $(\varepsilon_{\text{r,MEG}})$ do MEG, tudo a mesma temperatura (T), pela Equação 3.21. Esta foi obtida a partir da razão entre a Equação 2.21 aplicada, primeiro, com $\rho_{\text{solv}} = \rho_{\text{H}_2\text{O}}$ e, depois, com $\rho_{\text{solv}} = \rho_{\text{MEG}}$, e da Equação 2.44.

$$A_{\phi,\text{MEG}} = \left(\frac{\rho_{\text{MEG}}}{\rho_{\text{H}_2\text{O}}}\right)^{1/2} \left(\frac{\varepsilon_{\text{r},\text{H}_2\text{O}}}{\varepsilon_{\text{r},\text{MEG}}}\right)^{3/2} A_{\phi,\text{H}_2\text{O}}$$
(3.21)

3.8.3.3 Cálculo da constante de Debye-Hückel para a mistura de solventes

A constante de Debye-Hückel da mistura água e MEG na forma para coeficiente osmótico (A_{ϕ,H_2O+MEG}) foi calculada em função das constante de Debye-Hückel da água na forma para coeficiente osmótico (A_{ϕ,H_2O}) , densidade absoluta (ρ_{H_2O}) e constante dielétrica (ε_{r,H_2O}) da água, e das densidade absoluta (ρ_{H_2O+MEG}) e constante dielétrica $(\varepsilon_{r,H_2O+MEG})$ da mistura água e MEG, tudo calculado a mesma temperatura (T), pela Equação 3.22. Esta foi obtida a partir da razão entre a Equação 2.21 aplicada, primeiro, com $\rho_{solv} = \rho_{H_2O}$ e, depois, com $\rho_{solv} = \rho_{H_2O+MEG}$, e da Equação 2.44.

$$A_{\phi,\mathrm{H}_{2}\mathrm{O}+\mathrm{MEG}} = \left(\frac{\rho_{\mathrm{H}_{2}\mathrm{O}+\mathrm{MEG}}}{\rho_{\mathrm{H}_{2}\mathrm{O}}}\right)^{1/2} \left(\frac{\varepsilon_{\mathrm{r},\mathrm{H}_{2}\mathrm{O}}}{\varepsilon_{\mathrm{r},\mathrm{H}_{2}\mathrm{O}+\mathrm{MEG}}}\right)^{3/2} A_{\phi,\mathrm{H}_{2}\mathrm{O}}$$
(3.22)

3.8.4 Parâmetros do *Modelo de Pitzer* em água

3.8.4.1 Cálculo dos parâmetros do Modelo de Pitzer para o NaCl em água

Os parâmetros do modelo para o NaCl em água $(\beta_{\text{NaCl}}^{(0)\{\text{H}_2\text{O}\}}, \beta_{\text{NaCl}}^{(1)\{\text{H}_2\text{O}\}} \text{ e } C_{\text{NaCl}}^{\phi\{\text{H}_2\text{O}\}})$, foram calculados em função da temperatura (*T*), pelas equações (SILVESTER; PITZER,

1977):

$$\beta_{\text{NaCl}}^{(0)\{\text{H}_2\text{O}\}} = 0,0765 - 777,03 \left(\frac{1}{T} - \frac{1}{298,15}\right) - 4,4706 \ln\left(\frac{T}{298,15}\right) + 0,008946 \left(T - 298,15\right) - 0,0000033158 \left(T^2 - 298,15^2\right)$$
(3.23)

$$\beta_{\text{NaCl}}^{(1)\{\text{H}_2\text{O}\}} = 0,2664 + 0,000061608 \left(T - 298, 15\right) + 0,0000010715 \left(T^2 - 298, 15^2\right)$$
(3.24)

$$C_{\text{NaCl}}^{\phi\{\text{H}_2\text{O}\}} = 0,00127 + 33,317 \left(\frac{1}{T} - \frac{1}{298,15}\right) + 0,09421 \ln\left(\frac{T}{298,15}\right) - 0,00004655 \left(T - 298,15\right)$$
(3.25)

onde $\beta_{\text{NaCl}}^{(0)\{\text{H}_2\text{O}\}}$ e $\beta_{\text{NaCl}}^{(1)\{\text{H}_2\text{O}\}}$ são parâmetros do *Modelo de Pitzer* para o NaCl em água, e $C_{\text{NaCl}}^{\phi\{\text{H}_2\text{O}\}}$ é o terceiro coeficiente do virial na forma para coeficiente de atividade para o NaCl em água.

3.8.4.2 Cálculo dos parâmetros do Modelo de Pitzer para o KCI em água

Os parâmetros do modelo para o KCl em água ($\beta_{\text{KCl}}^{(0)\{\text{H}_2\text{O}\}}$, $\beta_{\text{KCl}}^{(1)\{\text{H}_2\text{O}\}}$ e $C_{\text{KCl}}^{\phi\{\text{H}_2\text{O}\}}$), foram calculados em função da temperatura (T), pelas equações (ARCHER, 1999):

$$\beta_{\text{KCl}}^{(0)\{\text{H}_2\text{O}\}} = 0,413229483398493 - 0,000870121476114027 (T - 298, 15) + + 0,00000101413736179231 (T - 298, 15)^2 + - \frac{1,99822538522801}{T - 225} - \frac{99,8120581680816}{T}$$
(3.26)

$$\beta_{\text{KCl}}^{(1)\{\text{H}_2\text{O}\}} = 0,206691413598171 + 0,00102544606022162(T - 298,15) + \frac{1883,49608000903}{(T - 225)^3}$$
(3.27)

$$C_{\text{KCl}}^{\phi\{\text{H}_2\text{O}\}} = -0,00133515934994478 + \frac{0,234117693834228}{T - 225} + \frac{0,75896583546707}{T}$$
(3.28)

onde $\beta_{\text{KCl}}^{(0)\{\text{H}_2\text{O}\}}$ e $\beta_{\text{KCl}}^{(1)\{\text{H}_2\text{O}\}}$ são parâmetros do *Modelo de Pitzer* para o KCl em água, e $C_{\text{KCl}}^{\phi\{\text{H}_2\text{O}\}}$ é o terceiro coeficiente do virial na forma para coeficiente de atividade para o KCl em água.

3.8.5 Parâmetros do Modelo de Pitzer em MEG e em mistura de solventes

A metodologia usada por Lorimer (1993), em relação a misturas água e MEG, considera que os parâmetros do modelo $\beta_{MX}^{(0)}$ e C_{MX}^{ϕ} são constantes, e que o parâmetro do modelo $\beta_{MX}^{(1)}$ apresenta dependência linear, em escala logarítmica, com a constante dielétrica. Com estas considerações, pode-se estender o *Modelo de Pitzer* para misturas água e MEG, permitindo o cálculo dos parâmetros do modelo para estas misturas.

3.8.5.1 Cálculo dos parâmetros do Modelo de Pitzer em MEG

Os parâmetros do modelo em MEG, $\beta_{MX}^{(0)\{MEG\}}$ e $C_{MX}^{\phi\{MEG\}}$, foram calculados em função dos parâmetros do modelo em água, respectivamente $\beta_{MX}^{(0)\{H_2O\}}$ e $C_{MX}^{\phi\{H_2O\}}$, por:

$$\beta_{\rm MX}^{(0)\{\rm MEG\}} = \beta_{\rm MX}^{(0)\{\rm H_2O\}} \tag{3.29}$$

$$C_{\rm MX}^{\phi\{\rm MEG\}} = C_{\rm MX}^{\phi\{\rm H_2O\}} \tag{3.30}$$

O parâmetro do modelo em MEG, $\beta_{MX}^{(1)\{MEG\}}$ foi calculado resolvendo-se, para este parâmetro, a equação do *Modelo de Pitzer* estendido para o MEG. Ou seja, usando, neste modelo: o valor de ln $\gamma_{MX}^{\{MEG\}}$, obtido da Equação 3.19, o valor de $A_{\phi,MEG}$, obtido da Equação 3.21, e os valores de $\beta_{MX}^{(0)\{MEG\}}$ e $C_{MX}^{\phi\{MEG\}}$, obtidos respectivamente da Equação 3.29 e da Equação 3.30, além do valor de $b_{MX}^{\{MEG\}}$ e as constantes do sal e do modelo $(z_M, z_X, \nu, \alpha \in \mathfrak{b})$, resulta em $\beta_{MX}^{(1)\{MEG\}}$ como única incógnita. Logo, resolve-se a equação resultante para $\beta_{MX}^{(1)\{MEG\}}$.

3.8.5.2 Cálculo dos parâmetros do Modelo de Pitzer em mistura de solventes

Os parâmetros do modelo na mistura água e MEG, $\beta_{MX}^{(0)\{H_2O+MEG\}}$ e $C_{MX}^{\phi\{H_2O+MEG\}}$, foram calculados em função dos parâmetros do modelo em água, respectivamente $\beta_{MX}^{(0)\{H_2O\}}$ e $C_{MX}^{\phi\{H_2O\}}$, por:

$$\beta_{\rm MX}^{(0)\{\rm H_2O+MEG\}} = \beta_{\rm MX}^{(0)\{\rm H_2O\}} \tag{3.31}$$

$$C_{\rm MX}^{\phi\{\rm H_2O+\rm MEG\}} = C_{\rm MX}^{\phi\{\rm H_2O\}}$$
(3.32)

O parâmetro do modelo na mistura água e MEG, $\beta_{MX}^{(1)\{H_2O+MEG\}}$, foi calculado em função dos parâmetros do modelo em água e em MEG (respectivamente $\beta_{MX}^{(1)\{H_2O\}}$ e $\beta_{MX}^{(1)\{MEG\}}$) e das constantes dielétricas dos solventes puros (ε_{r,H_2O} e $\varepsilon_{r,MEG}$), por:

$$\beta_{\mathrm{MX}}^{(1)\{\mathrm{H}_{2}\mathrm{O}+\mathrm{MEG}\}} = \beta_{0} \exp\left(\mathscr{A}\ln\varepsilon_{\mathrm{r,solvente}} + \mathscr{B}\right)$$
(3.33)

$$\mathscr{A} = \frac{\ln\left(\beta_{\mathrm{MX}} - \beta_{\mathrm{MX}}^{\mathrm{MX}} - \beta\right)}{\ln\left(\varepsilon_{\mathrm{r,H_2O}}/\varepsilon_{\mathrm{r,MEG}}\right)}$$
(3.34)

$$\mathscr{B} = \ln \frac{\beta_{\rm MX}^{(1/{\rm H_2O})}}{\beta_0} - \mathscr{A} \ln \varepsilon_{\rm r,H_2O}$$
(3.35)

onde $\beta_0 = 1$.

Tese de Doutorado. PPGEQ/UFRN

3.9 Equações para Ajuste por Regressão de Dados Experimentais

3.9.1 Molalidade do sal em solvente simples como função da temperatura

Adaptou-se a *Equação de Clarke-Glew* (CLARKE; GLEW, 1966) para a molalidade, obtendo-se:

$$\frac{b_{\text{MX}}}{b_0} = \exp\left[\Theta_{-2}\ln\frac{T}{T_0} + \sum_{i=-1}\Theta_i\left(\frac{T_0}{T}\right)^i\right]$$
(3.36)

onde os Θ_{-2} e Θ_i são parâmetros ajustáveis da equação, e $T_0 = 1 K$ é a temperatura unitária.

3.9.2 Potencial químico padrão de excesso do sal em mistura de solventes como função da fração molar do MEG livre de sal e da temperatura

Adaptou-se a equação proposta por Lorimer (1993) generalizando-a, e tornando os seus parâmetros dependentes polinomialmente da temperatura, obtendo-se:

$$\frac{\left[\mu_{\rm MX}^{0{\rm [H_2O+MEG]}}\right]^{\rm E}}{\nu RT} = x'_{\rm MEG} \left(1 - x'_{\rm MEG}\right) \sum_{i=0} \left[\sum_{j=0} \Theta_{i,j} \left(\frac{T}{T_0}\right)^j\right] x'_{\rm MEG}{}^i \tag{3.37}$$

onde os $\Theta_{i,j}$ são parâmetros ajustáveis da equação.

3.10 Propriedades de Excesso Apresentadas em Lorimer (1993)

No cálculo das propriedades de excesso apresentadas em Lorimer (1993) foi necessário, primeiramente, calcular as respectivas propriedades ideais. Estas, foram calculadas utilizando-se regra de mistura ideal, em solventes simples, com a fração molar de MEG livre de sal, ou seja:

$$\left[\ln b_{\rm MX}^{\rm {H_2O+MEG}}\right]^{\rm id} = (1 - x'_{\rm MEG}) \ln b_{\rm MX}^{\rm {H_2O}} + x'_{\rm MEG} \ln b_{\rm MX}^{\rm {MEG}}$$
(3.38)

$$\left[\ln\gamma_{\rm MX}^{\rm {H_2O+MEG}}\right]^{\rm id} = (1 - x'_{\rm MEG})\ln\gamma_{\rm MX}^{\rm {H_2O}} + x'_{\rm MEG}\ln\gamma_{\rm MX}^{\rm {MEG}}$$
(3.39)

Em seguida, as propriedades de excesso para a molalidade e o coeficiente de atividade foram calculadas, a saber:

$$\left[\ln b_{\rm MX}^{\rm {H_2O+MEG}}\right]^{\rm E} = \ln b_{\rm MX}^{\rm {H_2O+MEG}} - \left[\ln b_{\rm MX}^{\rm {H_2O+MEG}}\right]^{\rm id}$$
(3.40)

$$\left[\ln\gamma_{\rm MX}^{\{\rm H_2O+MEG\}}\right]^{\rm E} = \ln\gamma_{\rm MX}^{\{\rm H_2O+MEG\}} - \left[\ln\gamma_{\rm MX}^{\{\rm H_2O+MEG\}}\right]^{\rm id}$$
(3.41)

E, finalmente, com a Equação 3.40 e a Equação 3.41, a propriedade de excesso para o potencial químico padrão foi obtida:

$$\frac{\left[\mu_{\rm MX}^{0\{\rm H_2O+\rm MEG\}}\right]^{\rm E}}{\nu RT} = -\left[\ln b_{\rm MX}^{\{\rm H_2O+\rm MEG\}}\right]^{\rm E} - \left[\ln \gamma_{\rm MX}^{\{\rm H_2O+\rm MEG\}}\right]^{\rm E}$$
(3.42)

3.11 Constantes Físico-Químicas e Parâmetros Utilizados

A Tabela 6 apresenta os valores de diversas constantes utilizadas neste trabalho de tese de doutorado, suas unidades e a referência de onde foram coletadas.

Constante	Valor	Referência
α	$2,0 \text{ kg}^{1/2} \text{mol}^{1/2}$	Pitzer (1973)
в	$1,2 \text{ kg}^{1/2} \text{mol}^{1/2}$	Pitzer (1973)
b_0	$1 \text{ mol} \cdot \text{kg}$	Prausnitz, Lichtenthaler e Azevedo (1999, 511)
$\Delta_{\rm tr} G^0_{\rm H_2O \to MEG}$	$7000 \text{ J} \cdot \text{mol}^{-1}$	Marcus (1985)
e_0	$1,602176487 \times 10^{-19} \text{ C}$	Lide (2009)
ε_0	$8,854187817 \times 10^{-12} \text{ F} \cdot \text{m}^{-1}$	Lide (2009)
$k_{ m B}$	$1,3806504 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$	Lide (2009)
$M_{\rm H_2O}$	$0,018015 \text{ kg} \cdot \text{mol}^{-1}$	Lide (2009)
$M_{\rm KCl}$	$0,0745550 \text{ kg} \cdot \text{mol}^{-1}$	Lide (2009)
$M_{\rm MEG}$	$0,062068 \text{ kg} \cdot \text{mol}^{-1}$	Lide (2009)
$M_{\rm NaCl}$	$0,0584428 \text{ kg} \cdot \text{mol}^{-1}$	Lide (2009)
$N_{ m A}$	$6,02214179 \times 10^{23} \text{ mol}^{-1}$	Lide (2009)
R	$8,314472 \text{ J} \cdot \text{K}^{-1} \text{mol}^{-1}$	Lide (2009)

Tabela 6 – Valores de constantes utilizados nesta tese de doutorado.

Fonte: O autor.

3.12 Algoritmos

Nesta seção, várias sub-rotinas são apresentadas, na forma de fluxograma, juntamente com um breve resumo que esclarece o seu funcionamento. Em seguida, mostra-se como foram utilizadas a Equação 3.36 (subseção 3.12.5) e a Equação 3.37 (subseção 3.12.6) nos ajustes, por regressão de dados de equilíbrio, para um sal (NaCl ou KCl) e, respectivamente com solvente simples em função da temperatura, e com mistura água e MEG em função da temperatura e da composição de MEG livre de sal. Finalmente, com estas equações e as sub-rotinas, mostra-se como calcular propriedades de misturas água e MEG, inclusive de excesso, em função da temperatura e da composição de MEG livre de sal (subseção 3.12.7).

Nestas sub-rotinas usou-se os valores presentes na Tabela 6, bem como os valores:

$$z_{\rm M} = z_{\rm X} = \nu_{\rm M} = \nu_{\rm X} = 1 \tag{3.43}$$

$$\nu = \nu_{\mathrm{M}} + \nu_{\mathrm{X}} = 2 \tag{3.44}$$

para as cargas dos íons ($z_{\rm M}$ e $z_{\rm X}$), para os coeficientes estequiométricos dos íons ($\nu_{\rm M}$ e $\nu_{\rm X}$) e para a sua soma (ν). Estes últimos valores, devem-se ao fato deste trabalho de tese de doutorado abordar apenas os sais monovalentes: NaCl e KCl.

3.12.1 Sub-rotina Pitzer

Esta sub-rotina (Figura 21) implementou o *Modelo de Pitzer*. O valor do logaritmo do coeficiente de atividade de MX (ln γ_{MX}) foi calculado em função da molalidade de MX (b_{MX}), da constante de Debye-Hückel na forma para coeficiente osmótico (A_{ϕ}) e dos parâmetros do *Modelo de Pitzer* ($\beta_{MX}^{(0)}, \beta_{MX}^{(1)} \in C_{MX}^{\phi}$). Usou-se, esta sub-rotina, tanto para água, quanto para MEG ou misturas água e MEG.

3.12.2 Sub-rotina beta1_MEG

Esta sub-rotina (Figura 22) foi utilizada para calcular-se o parâmetro $\beta_{MX}^{(1)\{MEG\}}$ do *Modelo de Pitzer* em MEG. Este foi calculado em função da molalidade de MX em MEG ($b_{MX}^{\{MEG\}}$), da constante de Debye-Hückel do MEG na forma para coeficiente osmótico ($A_{\phi,MEG}$) e dos parâmetros $\beta_{MX}^{(0)\{MEG\}}$ e $C_{MX}^{\phi\{MEG\}}$ do *Modelo de Pitzer* em MEG. Um valor inicial (estimativa) para $\beta_{MX}^{(1)\{MEG\}}$ ($\beta_{MX}^{(1)\{MEG\}*}$) também precisou ser fornecido.

Figura 22 – Fluxograma da subrotina beta1_MEG.

Fonte: O autor.

3.12.3 Sub-rotina prop_mix

Esta sub-rotina (Figura 23) foi utilizada para calcular-se propriedades de mistura. Este cálculo foi realizado em função da molalidade de MX na mistura água e MEG $(b_{\text{MX}}^{\{\text{H}_2\text{O}+\text{MEG}\}})$, da fração molar de MEG livre de sal (x'_{MEG}) e da temperatura (T). A propriedade de mistura foi escolhida, por meio da variável *flag*, da seguinte forma:

Valor de $flag$	Função retornada
1	$\ln \gamma_{\rm MX}^{\rm {H_2O+MEG}}$
2	$\left[\ln b_{\rm MX}^{\rm {H_2O+MEG}}\right]^{\rm E}$
3	$\left[\ln \gamma_{\rm MX}^{\rm {\{H_2O+MEG\}}}\right]^{\rm E}$
qualquer outro valor	$\frac{\left[\mu_{\rm MX}^{0\{\rm H_2O+MEG\}}\right]^{\rm E}}{\nu RT}$

Tabela 7 – Valores de *flag* na sub-rotina prop_mix.

Fonte: O autor.

Figura 23 – Fluxograma da subrotina prop_mix.

Fonte: O autor.

Observa-se que, na chamada a sub-rotina beta1_MEG, o valor inicial (estimativa) $\beta_{MX}^{(1)\{MEG\}*}$ corresponde ao valor do parâmetro em água ($\beta_{MX}^{(1)\{H_2O\}}$). Os valores das molalidades de MX em solvente simples ($b_{MX}^{\{H_2O\}}$ e $b_{MX}^{\{MEG\}}$) foram obtidos em função da temperatura (T) com os parâmetros (Θ_i) da equação de ajuste por regressão de dados experimentais (Equação 3.36).

3.12.4 Sub-rotina b_mix

Esta sub-rotina (Figura 24) foi utilizada para calcular-se a molalidade de MX na mistura água e MEG ($b_{\text{MX}}^{\{\text{H}_2\text{O}+\text{MEG}\}}$) em função do potencial químico padrão de excesso de MX na mistura água e MEG ($\left[\mu_{\text{MX}}^{0\{\text{H}_2\text{O}+\text{MEG}\}}\right]^{\text{E}}/\nu_{RT}$), da fração molar de MEG livre de sal (x'_{MEG}) e da temperatura (T). Um valor inicial (estimativa) para $b_{\text{MX}}^{\{\text{H}_2\text{O}+\text{MEG}\}}$ ($b_{\text{MX}}^{\{\text{H}_2\text{O}+\text{MEG}\}}$) também precisou ser fornecido.

Figura 24 – Fluxograma da subrotina b_mix.

3.12.5 Cálculo da molalidade do sal em solvente simples como função da temperatura

Através dos dados experimentais coletados da literatura (Tabela 4 e Tabela 5), selecionou-se os que referiam-se a solubilidade de um sal (NaCl ou KCl) em solvente simples a diferentes temperaturas. Em seguida, quando necessário, os dados foram convertidos para molalidade. Finalmente, usou-se a Equação 3.36 para, por meio de ajuste por regressão, obter-se os melhores valores para os parâmetros Θ_i . A equação específica resultante, para cada sal, que representava o conjunto experimental de forma satisfatória, foi selecionada desprezando-se parâmetros considerados irrelevantes. As equações específicas, para cada sal e solvente, encontram-se no Capítulo 4.

3.12.6 Cálculo do potencial padrão de excesso do sal na mistura de solventes

Através dos dados experimentais coletados da literatura (Tabela 4 e Tabela 5), selecionou-se os que referiam-se a um sal (NaCl ou KCl) a diferentes frações de MEG na mistura de solvente e, também, a diferentes temperaturas e concentrações. Em seguida, quando necessário, os dados foram normalizados para molalidade de sal na mistura água e MEG ($b_{MX}^{(H_2O+MEG)}$), fração molar de MEG livre de sal na mistura água e MEG (x'_{MEG}) e temperatura (T). Prosseguindo, estes dados, juntamente com as equações específicas para cada sal e solvente simples (obtidas conforme descrito na subseção 3.12.5) foram submetidos a sub-rotina prop_mix (Figura 23), com o valor para a variável de controle: flag = 0. Desta forma, obteve-se valores de potencial padrão de excesso do sal na mistura água e MEG ($\left[\mu_{MX}^{0(H_2O+MEG)}\right]^{E}/\nu_{RT}$), a diferentes x'_{MEG} e T. Finalmente, usou-se a Equação 3.37 nestes resultados para, por meio de ajuste por regressão, obter-se os melhores valores para os parâmetros $\Theta_{i,j}$. A equação específica resultante, para cada sal, que representava o conjunto experimental de forma satisfatória, foi selecionada desprezando-se parâmetros considerados irrelevantes. As equações específicas, para cada sal, encontram-se no Capítulo 4.

3.12.7 Cálculo das propriedades de mistura

A partir das sub-rotinas apresentadas nesta seção e das equações específicas, geradas por meio da regressão dos dados experimentais, cujos parâmetros foram selecionados e calculados conforme descrito na subseção 3.12.5 e na subseção 3.12.6, obteve-se as propriedades de mistura em função da fração molar de MEG livre de sal na mistura água e MEG (x'_{MEG}) e da temperatura (T). Para isso, primeiramente, calculou-se a molalidade de MX na mistura água e MEG ($b_{\text{MX}}^{\{\text{H}_2\text{O}+\text{MEG}\}}$), usando a sub-rotina b_mix, com o valor para o potencial químico padrão de excesso na mistura água e MEG ($\left[\mu_{\text{MX}}^{0\{\text{H}_2\text{O}+\text{MEG}\}}\right]^{\text{E}}/\nu_{RT}$) obtido pela equação de regressão específica e, também, com os valores de x'_{MEG} e T. Finalmente, utilizando estes resultados na sub-rotina prop_mix (Figura 23), com valores para a variável

de controle (flag) conforme a Tabela 7, obteve-se a propriedade de mistura especificada.

3.13 Programa JAFOSSMS

Por meio dos algoritmos apresentados na seção 3.12, foi implementado em Python (python.org), utilizando-se o IDE Eclipse (eclipse.org) para depuração e desenvolvimento, o programa denominado: *JAFOSSMS - Solubilidade de Sais em Mistura de Solventes*. Este aplicativo possui uma interface gráfica, de comunicação com o usuário, desenvolvida em PySide (qt-project.org), bem como utiliza as bibliotecas NumPy (numpy.org) e SciPy (scipy.org) para cálculos numéricos e científicos e, a biblioteca matplotlib (matplotlib.org) para gerar gráficos.

O sistema operacional adotado para programação foi o Ubuntu[®] (ubuntu.com), pelas facilidades próprias deste sistema. No entanto, o programa é totalmente portável em Windows[®] (windows.microsoft.com) e, também, em Mac OS X[®] (apple.com). Os requisitos para a execução deste programa, em diferentes sistemas operacionais, encontramse descritos no Apêndice B. A seguir, apresenta-se o *passo a passo* de como utilizar o programa *JAFOSSMS*.

Para utilizar-se o programa *JAFOSSMS*, primeiramente escolhe-se o arquivo principal (subseção D.6.1), referente ao sistema a ser estudado, por meio do botão *"Procurar"* (Figura 25) ou caixa de texto *"Arquivo com Dados de Entrada"*. Em seguida, executa-se os cálculos de regressão por meio do botão *"Executar"*.

Figura 25 – Programa JAFOSSMS : Seleção do sistema a ser estudado.

Terminado os cálculos, o programa retorna para o usuário um relatório, na aba "*RELATÓRIO GERAL*", de tudo que foi calculado e utilizado nos cálculos, inclusive toda a parte estatística (Figura 26). Este relatório pode ser copiado ou salvo.

		LEITUR	A, TRIAGE	M E CON	ERSAO DAS UNIDADES DOS DADOS DE EQUILIBRIO
Arguivo	om Dados de F	Entrada: da	taset NaC	l.in	
MX = NaC					
$z_{Na} = 1$					
$z_{c1} = 1$ $v_{n_{0}} = 1$					
$v_{c1} = 1$					
$M_{\text{NaCl}} = 0$,	0584428 kg·mo	1 ⁻¹			
Δ _{tr} G [*] H20 par	a meg = 7000,0	0.mor -			
Arguivo d	le Dados: data	a_NaCl_Bald	win1969.d	at	
Referênci	a: Baldwin, H	Raridon e K	raus (196	9)	
W MIC	IIIH2O+MEG (G)	m _{Nacl} (g)	1 (C)	use	
0.0530	1000.0	266.9	E0 0	DDDD	
0,2530	1000,0	266,8	50,0	PRED	
0,2530	1000,0	266,8 184,7	50,0 50,0	PRED PRED	
0,2530 0,5024 0,7483	1000,0 1000,0 1000,0	266,8 184,7 113,6	50,0 50,0 50,0	PRED PRED PRED	
0,2530 0,5024 0,7483 0,8526	1000,0 1000,0 1000,0 1000,0	266,8 184,7 113,6 91,9	50,0 50,0 50,0 50,0	PRED PRED PRED PRED	
0,2530 0,5024 0,7483 0,8526 0,9506	1000,0 1000,0 1000,0 1000,0 1000,0	266,8 184,7 113,6 91,9 75,6	50,0 50,0 50,0 50,0 50,0	PRED PRED PRED PRED PRED	
0,2530 0,5024 0,7483 0,8526 0,9506 1,0000	1000,0 1000,0 1000,0 1000,0 1000,0 1000,0	266,8 184,7 113,6 91,9 75,6 68,4	50,0 50,0 50,0 50,0 50,0 50,0	PRED PRED PRED PRED PRED PRED	
0,2530 0,5024 0,7483 0,8526 0,9506 1,0000	1000,0 1000,0 1000,0 1000,0 1000,0 1000,0	266,8 184,7 113,6 91,9 75,6 68,4	50,0 50,0 50,0 50,0 50,0 50,0	PRED PRED PRED PRED PRED PRED	
0,2530 0,5024 0,7483 0,8526 0,9506 1,0000	1000,0 1000,0 1000,0 1000,0 1000,0 1000,0	266,8 184,7 113,6 91,9 75,6 68,4	50,0 50,0 50,0 50,0 50,0 50,0 Gray	PRED PRED PRED PRED PRED PRED PRED	o Geral 12

Figura 26 – Programa JAFOSSMS : Relatório gerado.

Fonte: o autor.

O programa oferece, por meio da aba *"SOLVENTE SIMPLES"*, botões de opções e caixas de seleção com opções para poder-se gerar um gráfico binário (Figura 27).

Figura 27 – programa JAFOSSMS: Opções para geração de gráfico binário.

RELA <u>T</u> ÓRIO GI	ERAL SOLVENTE SIMPL	ES MISTURA DE	E SOLVENTES	GRÁFICO E ESTATÍSTICAS		
Cráfico 1	Ordenada: Molalidade	🗧 do Sal em	MEG 🛟			
Granco I	Abscissa: Temperatura e	m Kelvins	\$			
rquivo com <u>D</u> a	dos de Entrada: /home	/jafobr/workspac	es/Python/JA	FOSSMS/src/Data/dataset_Na	Cl.in	Procu

O programa oferece, por meio da aba "MISTURA DE SOLVENTES", botões de opções e caixas de seleção com opções para poder-se gerar um gráfico ternário (Figura 28).

Figura 28 – Programa JAFOSSMS : Opções para geração de gráfico ternário.

_	TAL SOLVENTE SIMPLES MISTORA DE SOLVENTES QUARICO E ESTAT	ISTICAS
ļsotermas para	Cálculo Normal / Regressão 🛟 em Kelvins 🛟 293,15 298,	15 318,15 348,15 383,15 403,15 Escolher
Gráficos:		
Gráfico 2	Ordenada: Molalidade 🗘 do Sal em Mistura de Solventes	
	Abscissa: Fração Molar 🛟 do MEG 🛟 Livre de Sal	
	Ordenada: Coeficiente de Atividade 🗧 🗧 do Sal em Mistu	ira de Solventes
Gráfico <u>3</u>	Abscissa: Fração Molar 1 do MEG 1 Livre de Sal	
Gratico <u>4</u>	Abscissa: Fração (Molar :) do (MEG :) Livre de Sal	

Fonte: o autor.

Dentre estes objetos gráficos, destacam-se as caixas de seleção, para escolher o modo (regressão ou predição), e o botão para escolha de isotermas. A escolha de isotermas realiza-se numa nova janela (Figura 29).

Figura 29 – Programa $J\!AFOSSMS$: Seleção das isotermas para geração de gráfico ternário.

sotermas para	Cálculo Normal / Regressão 🛟 em Kelvins 🛟	Escolher
iráficos:		
Gráfico 2	Ordenada: Molalidade c) do Sal em Mistura de Solventes	
	Abscissa: Fração Molar 🗊 do MEG 🗊 Livre de Sal	
	🛿 🗉 Escolha as isotermas para a Regressão	
Gráfico <u>3</u>	283,15 K (2 pontos experimentais) 288,15 K (1 ponto experimental) 🧭 293,15 K (16 pontos experimentais)	
	298,15 K (21 pontos experimentais) 303,15 K (2 pontos experimentais) 313,15 K (2 pontos experimentais)	
Gráfico 4	🛿 🗹 318,15 K (12 pontos experimentais) 🗌 323,15 K (2 pontos experimentais) 🗌 333,15 K (2 pontos experimentais)	
	343,15 K (2 pontos experimentais) 343,15 K (12 pontos experimentais) 353,15 K (2 pontos experimentais)	
	□ 363,15 K (2 pontos experimentais) □ 373,15 K (2 pontos experimentais) ☑ 383,15 K (13 pontos experimentais)	

Por último, de acordo com a seleção, clicando no botão correspondente ao gráfico desejado, obtém-se este, na aba " $GR \acute{A} FICO~E~ESTAT \acute{I} STICAS$ ", juntamente com um pequeno resumo estatístico.

A Figura 30 ilustrada um gráfico binário.

Figura 30 – Programa JAFOSSMS : Gráfico binário.

Fonte: o autor.

A Figura 31 ilustrada um gráfico ternário.

Figura 31 – Programa JAFOSSMS : Gráfico ternário.

Na aba "GRÁFICO E ESTATÍSTICAS", apresenta-se o gráfico em uma interface que permite executar personalizações, como por exemplo: ampliar regiões no gráfico, mudar a posição e tamanho da legenda, mudar o tamanho dos rótulos nos eixos, e também, salvar o gráfico. Além destas personalizações para o gráfico, pode-se copiar ou salvar o resumo estatístico.

CAPÍTULO 4 RESULTADOS E DISCUSSÕES

4 RESULTADOS E DISCUSSÕES

Neste capítulo, inicialmente apresenta-se cada resultado gerado pelo programa *JAFOSSMS* (seção 3.13), juntamente com uma discussão que esclarece o que ocorreu. Por último, apresenta-se a validação do *Modelo de Pitzer* implementado e, também, a comparação do Modelo JAFOSSMS com outros modelos.

Foi escolhida uma sequência para a apresentação dos resultados e discussões. Primeiramente, dividiu-se os sistemas estudados (Tabela 4 e Tabela 5) pelo sal. Ou seja, primeiro os sistemas com NaCl e, em seguida, os com KCl. Para cada sal, foi feita a divisão em sistemas com solvente simples e com mistura água e MEG. Para o caso dos sistemas com solvente simples, primeiro apresenta-se os sistemas com água e, em seguida, os com o MEG. Para o caso de sistemas com mistura de solventes, primeiro apresenta-se o potencial químico padrão de excesso, prossegue-se com a molalidade, o logaritmo de excesso da molalidade, o coeficiente de atividade e, finalmente, o logaritmo de excesso do coeficiente de atividade. Para cada caso, nos sistemas com mistura de solventes, primeiro apresenta-se o resultado cujos pontos experimentais foram utilizados no procedimento de ajuste por regressão do potencial químico padrão de excesso, seguido por outro resultado, cujos pontos experimentais não foram utilizados neste procedimento. O primeiro é chamado de modo de *Cálculo Normal / Regressão* e o outro de modo de *Predição*.

4.1 Sistemas com NaCl

4.1.1 Sistemas com solvente simples

4.1.1.1 Sistema H₂O+NaCl

Dados de solubilidade de NaCl em água, selecionados dos sistemas estudados (Tabela 4 e Tabela 5), foram ajustados por regressão não linear, conforme descrito na subseção 3.12.5, utilizando-se a Equação 3.36. Resultando, após desprezar-se b_0 e outras simplificações, na equação:

$$b_{\text{NaCl}}^{\{\text{H}_2\text{O}\}} = \exp\left(\theta_0 + \theta_1 T + \theta_2 \ln T\right)$$
(4.1)

onde $\theta_0 = \Theta_0$, $\theta_1 = \Theta_1 \in \theta_2 = \Theta_{-2}$.

A análise estatística do ajuste por regressão não linear foi realizada com um *nível* da significância (α) de 5,0%, obtendo-se:

- a) desvio padrão assintótico: $s = 0,020406 \text{ mol} \cdot \text{kg}^{-1}$;
- b) coeficiente de determinação: $R^2 = 0,99294;$

c) coeficiente de determinação ajustado: $R_{ajustado}^2 = 0.99244.$

A Tabela 8 apresenta a *análise de variância* (ANOVA) do ajuste por regressão não linear.

Fonte	GL	Soma de Quadrados	Quadrado Médio	F-valor	$\Pr(>F)$
Regressão Resíduo Total Total Corrigido	3 28 31 30	$1252,9 \\ 0,011660 \\ 1252,9 \\ 1,6519$	$\begin{array}{c} 417,\!62 \\ 0,\!00041642 \end{array}$	1002900,0	0,00000

Tabela 8 – ANOVA (Sistema H₂O+NaCl).

Fonte: O autor.

A Tabela 9 apresenta os parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.1, juntamente com seus intervalos de confiança. O valor, para este caso, do t de Student crítico foi: t-crítico = 2,0484.

Tabela 9 – Parâmetros obtidos (Sistema H₂O+NaCl).

Parâmetro	Estimativa	Erro Padrão Assintótico	<i>t</i> -valor	$\Pr(> t)$	Intervalo de Confian Assintótico 95,0%	
					Inferior	Superior
$egin{array}{c} heta_0 \ heta_1 \ heta_2 \end{array}$	5,1695 0,0033193 -0,76200	$0,5809 \\ 0,0003601 \\ 0,12075$	8,8990 9,2172 -6,3106	0,00000 0,00000 0,00000	3,9795 0,0025816 -1,00935	6,3594 0,0040569 -0,51466

Fonte: O autor.

A Tabela 10 apresenta a *matriz de correlação* dos parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.1.

Tabela 10 – Matriz de Correlação (Sistema $H_2O+NaCl$).

Parâmetro	$ heta_0$	$ heta_1$	$ heta_2$
$egin{array}{c} heta_0 \ heta_1 \ heta_2 \end{array}$	1,00000	0,99846	-0,99995
	0,99846	1,00000	-0,99894
	-0,99995	-0,99894	1,00000

Fonte: O autor.

Algumas outras medidas estatísticas básicas, também foram calculadas:

- a) desvio absoluto médio = $0,01451 \text{ mol} \cdot \text{kg}^{-1}$;
- b) desvio absoluto máximo = $0,06464 \text{ mol} \cdot \text{kg}^{-1}$;
- c) desvio relativo absoluto médio = 0,23%;
- d) desvio relativo absoluto máximo = 0.96%.

O ajuste foi bastante satisfatório, o que é evidenciado pelo valor $R^2 = 0,99294$ para o coeficiente de determinação, pela ANOVA (Tabela 8) com Pr(>F) = 0,00000 e pelo desvio relativo absoluto médio = 0,23%. Todos os parâmetros obtidos (Tabela 9) contribuem significativamente para o modelo, pois, possuem baixos valores de Pr(>|t|). Estes, também, apresentam significante correlação entre si, conforme evidenciado pelos altos valores absolutos na matriz de correlação (Tabela 10).

Observa-se, na Figura 32, que a molalidade do NaCl aumenta com a temperatura, de forma ligeiramente acima da linear, em toda a faixa de temperatura correlacionada. Os dados experimentais, de todos os autores, dispuseram-se em torno da curva, confirmando um bom ajuste.

Figura 32 – Molalidade do NaCl em H₂O em função da Temperatura.

4.1.1.2 Sistema MEG+NaCl

Dados de solubilidade de NaCl em MEG, selecionados dos sistemas estudados (Tabela 4 e Tabela 5), foram ajustados por regressão não linear, conforme descrito na subseção 3.12.5, utilizando-se a Equação 3.36. Resultando, após desprezar-se b_0 e outras simplificações, na equação:

$$b_{\text{NaCl}}^{\{\text{MEG}\}} = \exp\left(\theta_0 + \theta_1 T\right) \tag{4.2}$$

onde $\theta_0 = \Theta_0 \in \theta_1 = \Theta_1$.

A análise estatística do ajuste por regressão não linear foi realizada com um *nível* da significância (α) de 5,0%, obtendo-se:

- a) desvio padrão assintótico: $s = 0,010445 \text{ mol} \cdot \text{kg}^{-1}$;
- b) coeficiente de determinação: $R^2 = 0.93533;$
- c) coeficiente de determinação ajustado: $R_{ajustado}^2 = 0.92455.$

Fonte: O autor.

A Tabela 11 apresenta a ANOVA do ajuste por regressão não linear.

Fonte	GL	Soma de Quadrados	Quadrado Médio	F-valor	$\Pr(>F)$
Regressão Resíduo	$\frac{2}{6}$	$\frac{11,364}{0,00065462}$	$5,682 \\ 0,00010910$	52079,0	0,00002
Total Total Corrigido	8 7	$11,\!365\\0,\!010122$			

Tabela 11 – ANOVA (Sistema MEG+NaCl).

Fonte: O autor.

A Tabela 12 apresenta os parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.2, juntamente com seus intervalos de confiança. O valor, para este caso, do t de Student crítico foi: t-crítico = 2,4469.

Tabela 12 – Parâmetros obtidos (Sistema MEG+NaCl).

Parâmetro	Estimativa	Erro Padrão Assintótico	t-valor	$\Pr(> t)$	Intervalo de Assintóti	e Confiança ico 95,0%
					Inferior	Superior
$\frac{\theta_0}{\theta_1}$	0,41306 -0,00072237	0,02593 0,00007854	15,9327 -9,1973	$0,00000 \\ 0,00009$	0,34963 -0,00091455	0,47650 -0,00053019

Fonte: O autor.

A Tabela 13 apresenta a matriz de correlação dos parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.2.

tema MEG+NaCl).						
Parâmetro	$\overline{ heta}_0$	$ heta_1$				
θ_0	1,00000	-0,99283				

Tabela 13 – Matriz de Correlação (Sis-

Fonte: O autor.

Algumas outras medidas estatísticas básicas foram calculadas:

- a) desvio absoluto médio = $0,00699 \text{ mol} \cdot \text{kg}^{-1}$;
- b) desvio absoluto máximo = $0,02083 \text{ mol} \cdot \text{kg}^{-1}$;
- c) desvio relativo absoluto médio = 0.58%;
- d) desvio relativo absoluto máximo = 1,74%.

O ajuste foi bastante satisfatório, o que é evidenciado pelo valor ${\cal R}^2=0,93533$ para o coeficiente de determinação, pela ANOVA (Tabela 8) com Pr(>F) = 0,00002 e

pelo desvio relativo absoluto médio = 0.58%. Todos os parâmetros obtidos (Tabela 12) contribuem significativamente para o modelo, pois, possuem baixos valores de Pr(>|t|). Estes, também, apresentam significante correlação entre si, conforme evidenciado pelos altos valores absolutos na matriz de correlação (Tabela 13).

Observa-se, na Figura 33, que a molalidade do NaCl diminui com a temperatura, de forma quase linear, em toda a faixa de temperatura correlacionada. Os dados experimentais, de todos os autores, dispuseram-se em torno da curva, confirmando um bom ajuste. O ponto experimental de Kraus, Raridon e Baldwin (1964), próximo a 300K, embora sendo o mais deslocado da curva ajustada, apresenta um desvio absoluto, relativo a molalidade, muito pequeno.

Figura 33 – Molalidade do NaCl em MEG em função da Temperatura.

4.1.2 Sistema com mistura água e MEG (H₂O+MEG+NaCl)

4.1.2.1 Potencial químico padrão de excesso do NaCl na mistura água e MEG (Regressão)

Dados de solubilidade de NaCl em água e MEG, selecionados dos sistemas estudados (Tabela 4 e Tabela 5), foram ajustados por regressão não linear, conforme descrito na subseção 3.12.6, utilizando-se a Equação 3.37. Resultando, após desprezar-se b_0 e outras simplificações, na equação:

$$\frac{\left[\mu_{\text{NaCl}}^{0\{\text{H}_{2}\text{O}+\text{MEG}\}}\right]^{\text{E}}}{\nu RT} = x_{\text{MEG}}^{\{\text{H}_{2}\text{O}+\text{MEG}\}} \left(1 - x_{\text{MEG}}^{\{\text{H}_{2}\text{O}+\text{MEG}\}}\right) \left[\theta_{0} + \theta_{1}T + (\theta_{2} + \theta_{3}T) x_{\text{MEG}}^{\{\text{H}_{2}\text{O}+\text{MEG}\}} + (\theta_{4} + \theta_{5}T) x_{\text{MEG}}^{\{\text{H}_{2}\text{O}+\text{MEG}\}^{2}}\right]$$
(4.3)

onde $\theta_0 = \Theta_{0,0}, \ \theta_1 = \Theta_{0,1}, \ \theta_2 = \Theta_{1,0}, \ \theta_3 = \Theta_{1,1}, \ \theta_4 = \Theta_{2,0} \ e \ \theta_5 = \Theta_{2,1}.$

Fonte: O autor.

A análise estatística do ajuste por regressão não linear foi realizada com um *nível* da significância (α) de 5,0%, obtendo-se:

- a) desvio padrão assintótico: s = 0.012440;
- b) coeficiente de determinação: $R^2 = 0.99930;$
- c) coeficiente de determinação ajustado: $R^2_{\rm ajustado}=0,99926.$

A Tabela 14 apresenta a ANOVA do ajuste por regressão não linear.

Tabela 14 – ANOVA (Sistema H₂O+MEG+NaCl).

Fonte	GL	Soma de Quadrados	Quadrado Médio	F-valor	$\Pr(>F)$
Regressão Resíduo Total Total Corrigido	6 101 107 106	$\begin{array}{c} 45,517\\ 0,015629\\ 45,533\\ 22,215\end{array}$	$7,5862 \\ 0,00041642$	49024,0	0,00000

Fonte: O autor.

A Tabela 15 apresenta os parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.3, juntamente com seus intervalos de confiança. O valor, para este caso, do t de Student crítico foi: t-crítico = 1,9837.

Parâmetro	Estimativa	Erro Padrão Assintótico	<i>t</i> -valor	$\Pr(> t)$	Intervalo de Confiança Assintótico $95,0\%$	
					Inferior	Superior
θ_0	8,0858	0,3384	23,8961	0,00000	7,4145	8,7570
$ heta_1$	-0,0078341	0,0009962	-7,8643	0,00000	-0,0098103	-0,0058580
$ heta_2$	-17,963	1,590	$-11,\!2954$	0,00000	-21,117	-14,808
$ heta_3$	0,037503	0,004678	8,0161	0,00000	0,028222	0,046784
$ heta_4$	$13,\!113$	$1,\!675$	$7,\!8306$	0,00000	9,791	$16,\!435$
θ_5	-0,016159	0,004914	-3,2883	0,00139	-0,025907	-0,006411

Tabela 15 – Parâmetros obtidos (Sistema H₂O+MEG+NaCl).

Fonte: O autor.

A Tabela 16 apresenta a *matriz de correlação* dos parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.3.

Tabela 16 – Matriz de Correlação (Sistema H₂O+MEG+NaCl).

Parâmetro	$ heta_0$	$ heta_1$	θ_2	$ heta_3$	$ heta_4$	θ_5
θ_0 θ_1	1,00000	-0,99248	-0,93807	0,93154	0,85049	-0,84601 0.85156
θ_2	-0,93807	0,93090	1,00000	-0,99249	-0,97273	0,96676
$egin{array}{c} heta_3 \ heta_4 \end{array}$	$0,93154 \\ 0,85049$	-0,93849 -0,84326	-0,99249 -0,97273	$1,00000 \\ 0,96428$	$0,96428 \\ 1,00000$	-0,97289 -0,99252
$ heta_5$	-0,84601	$0,\!85156$	$0,\!96676$	-0,97289	-0,99252	1,00000

Algumas outras medidas estatísticas básicas foram calculadas:

- a) desvio absoluto médio = 0,00834;
- b) desvio absoluto máximo = 0,04081;
- c) desvio relativo absoluto médio¹ = 2,96%;
- d) desvio relativo absoluto máximo¹ = 72,20%.

O ajuste foi bastante satisfatório, o que é evidenciado pelo valor $R^2 = 0,99930$ para o coeficiente de determinação, pela ANOVA (Tabela 14) com Pr(>F) = 0,00000 e pelo desvio relativo absoluto médio = 2,96%. O ponto experimental com desvio relativo absoluto máximo = 72,20% não foi considerado ruim devido ao seu baixo desvio absoluto (0,01944). Todos os parâmetros obtidos (Tabela 15) contribuem significativamente para o modelo, pois, possuem baixos valores de Pr(>|t|). Estes, também, apresentam significante correlação entre si, conforme evidenciado pelos altos valores absolutos na matriz de correlação (Tabela 16).

Observa-se, na Figura 34, que o potencial químico padrão de excesso do NaCl na mistura água e MEG, nas diversas isotermas, cresce desde zero até um valor máximo correspondente a fração molar de MEG livre de solvente próximo a 0,6 e, depois, decresce até o valor zero. Nota-se, também, que as isotermas se cruzam no valor aproximado de 0,2 para a fração molar de MEG livre de solvente. Para valores menores que este, o potencial químico padrão de excesso do NaCl na mistura água e MEG diminui com o aumento da temperatura e, para a faixa restante da fração molar de MEG livre de solvente, tem um comportamento inverso. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando o bom ajuste.

Figura 34 – Potencial químico padrão de excesso do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Regressão)².

Fonte: O autor.

 $^{^1}$ $\,$ For am desconsiderados 38 pontos experimentais.

 $^{^2}$ $\,$ Isotermas com menos de 3 pontos experimentais foram omitidas.

4.1.2.2 Potencial químico padrão de excesso do NaCl na mistura água e MEG (Predição)

A Figura 35 representa as isotermas do potencial químico padrão de excesso do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Predição). Nela, as regiões de crescimento e decrescimento correspondem, aproximadamente, as observadas na Figura 34. Nota-se, também, o fenômeno de inversão em torno do mesmo valor citado na Figura 34, ou seja, no valor aproximado de 0,2 para a fração molar de MEG livre de solvente. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando a boa predição.

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,01359;
- b) desvio absoluto máximo = 0,05278;
- c) desvio relativo absoluto médio
3=2,05
- d) desvio relativo absoluto máximo³ = 5,17

Os valores do desvio absoluto médio = 0,01359 e do desvio relativo absoluto médio = 2,05% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que a estimativa para o potencial químico padrão de excesso do NaCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

³ Foram desconsiderados 5 pontos experimentais.

4.1.2.3 Molalidade do NaCl na mistura água e MEG

Observa-se, na Figura 36, que a molalidade do NaCl na mistura água e MEG, nas diversas isotermas, diminui, a razão inferior que a linear, com o aumento da fração molar de MEG livre de solvente em toda a faixa desta. Nota-se, também, que as isotermas se cruzam no valor aproximado de 0,8 para a fração molar de MEG livre de solvente. Para valores menores que este, a molalidade do NaCl na mistura água e MEG aumenta com o aumento da temperatura e, para a faixa restante da fração molar de MEG livre de solvente, tem um comportamento inverso. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando o bom cálculo.

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = $0,02186 \text{ mol} \cdot \text{kg}^{-1}$;
- b) desvio absoluto máximo = $0, 12584 \text{ mol} \cdot \text{kg}^{-1};$
- c) desvio relativo absoluto médio = 0.83%;
- d) desvio relativo absoluto máximo = 4,27%.

Os valores do desvio absoluto médio = $0,02186 \text{ mol} \cdot \text{kg}^{-1}$ e do valor do desvio relativo absoluto médio = 0,83% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que os valores calculados para a molalidade do NaCl na mistura água e MEG representaram, de forma aceitável, os dados experimentais comparativos usados.

4.1.2.4 Molalidade do NaCl na mistura água e MEG (Predição)

A Figura 37 representa as isotermas da molalidade do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Predição). Nela, a forma como ocorre o decrescimento da molalidade do NaCl na mistura água e MEG corresponde, aproximadamente, a observada na Figura 36. Nota-se, também, o fenômeno de inversão em torno do mesmo valor citado na Figura 36, ou seja, no valor aproximado de 0,8 para a fração molar de MEG livre de solvente. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando a boa predição.

Figura 37 – Molalidade do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Predição).

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = $0,02791 \text{ mol} \cdot \text{kg}^{-1}$;
- b) desvio absoluto máximo = $0,10249 \text{ mol} \cdot \text{kg}^{-1};$
- c) desvio relativo absoluto médio = 1,26%;
- d) desvio relativo absoluto máximo = 5,27%.

Os valores do desvio absoluto médio = $0,02791 \text{ mol} \cdot \text{kg}^{-1}$ e do desvio relativo absoluto médio = 1,26% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que a estimativa para a molalidade do NaCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

4.1.2.5 Logaritmo de excesso da molalidade do NaCl na mistura água e MEG

Observa-se, na Figura 38, que o logaritmo de excesso da molalidade do NaCl na mistura água e MEG, nas diversas isotermas, decresce desde zero até um valor mínimo correspondente a fração molar de MEG livre de solvente próximo a 0,4 e, depois, cresce até o valor zero. Nota-se, também, que o logaritmo de excesso da molalidade do NaCl na mistura água e MEG, para cada fração molar de MEG livre de solvente, aumenta com o aumento da temperatura. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando o bom cálculo.

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00834;
- b) desvio absoluto máximo = 0.04363;
- c) desvio relativo absoluto médio⁴ = 6,35%;
- d) desvio relativo absoluto máximo⁴ = 93,65%.

Os valores do desvio absoluto médio = 0,00834 e do desvio relativo absoluto médio = 6,35% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. O ponto experimental com desvio relativo absoluto máximo = 93,65%não foi considerado ruim devido ao seu baixo desvio absoluto (0,01771). Sendo assim, foi considerado que os valores calculados para o logaritmo de excesso da molalidade do NaCl na mistura água e MEG representaram, de forma aceitável, os dados experimentais comparativos usados.

 $^{^4}$ Foram desconsiderados 18 pontos experimentais.

4.1.2.6 Logaritmo de excesso da molalidade do NaCl na mistura água e MEG (Predição)

A Figura 39 representa as isotermas do logaritmo de excesso da molalidade do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Predição). Nela, as regiões de decrescimento e crescimento correspondem, aproximadamente, as observadas na Figura 38. Nota-se, como na Figura 38, que o logaritmo de excesso da molalidade do NaCl na mistura água e MEG, para cada fração molar de MEG livre de solvente, aumenta com o aumento da temperatura. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando a boa predição.

Figura 39 – Logaritmo de excesso da molalidade do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Predição).

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,01240;
- b) desvio absoluto máximo = 0,05138;
- c) desvio relativo absoluto médio⁵ = 5,98%;
- d) desvio relativo absoluto máximo⁵ = 19,23%.

Os valores do desvio absoluto médio = 0,01240 e do desvio relativo absoluto médio = 5,98% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. O ponto experimental com desvio relativo absoluto máximo = 19,23%não foi considerado ruim devido ao seu baixo desvio absoluto (0,03351). Sendo assim, foi considerado que a estimativa para o logaritmo de excesso da molalidade do NaCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

 $^{^{5}}$ Foram desconsiderados 5 pontos experimentais.
4.1.2.7 Coeficiente de atividade do NaCl na mistura água e MEG

Observa-se, na Figura 40, que o coeficiente de atividade do NaCl na mistura água e MEG, nas diversas isotermas, diminui da faixa de 0,8-1,0 até um valor mínimo correspondente a fração molar de MEG livre de solvente próximo a 0,6 e, depois, cresce até a faixa de 1,2-1,7. Nota-se, também, que as isotermas se cruzam no valor aproximado de 0,8 para a fração molar de MEG livre de solvente. Para valores menores que este, o coeficiente de atividade do NaCl na mistura água e MEG diminui com o aumento da temperatura e, para a faixa restante da fração molar de MEG livre de solvente, tem um comportamento inverso. Logo, os maiores afastamentos da idealidade ocorrem no mínimo antes da inversão e em MEG puro. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando o bom cálculo.

Figura 40 – Coeficiente de atividade do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl.

Algumas medidas estatísticas básicas, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00125;
- b) desvio absoluto máximo = 0,01173;
- c) desvio relativo absoluto médio = 0,16%;
- d) desvio relativo absoluto máximo = 1,42%.

Os valores do desvio absoluto médio = 0,00125 e do desvio relativo absoluto médio = 0,16% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que os valores calculados para o coeficiente de atividade do NaCl na mistura água e MEG representaram, de forma aceitável, os dados experimentais comparativos usados.

4.1.2.8 Coeficiente de atividade do NaCl na mistura água e MEG (Predição)

A Figura 41 representa as isotermas do coeficiente de atividade do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Predição). Nela, as regiões de decrescimento e crescimento correspondem, aproximadamente, as observadas na Figura 40. Nota-se, também, o fenômeno de inversão em torno do mesmo valor citado na Figura 40, ou seja, no valor aproximado de 0,8 para a fração molar de MEG livre de solvente. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando a boa predição.

Figura 41 – Coeficiente de atividade do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Predição).

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00140;
- b) desvio absoluto máximo = 0,00520;
- c) desvio relativo absoluto médio = 0,16%;
- d) desvio relativo absoluto máximo=0,48%.

Os valores do desvio absoluto médio = 0,00140 e do desvio relativo absoluto médio = 0,16% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que a estimativa para o coeficiente de atividade do NaCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

4.1.2.9 Logaritmo de excesso do coeficiente de atividade do NaCl na mistura água e MEG

Observa-se, na Figura 42, que o logaritmo de excesso do coeficiente de atividade do NaCl na mistura água e MEG, nas diversas isotermas, decresce desde zero até um valor mínimo correspondente a fração molar de MEG livre de solvente próximo a 0,65 e, depois, cresce até o valor zero. Nota-se, também, que as isotermas se cruzam no valor aproximado de 0,1 para a fração molar de MEG livre de solvente. Para valores menores que este, o logaritmo de excesso do coeficiente de atividade do NaCl na mistura água e MEG aumenta com o aumento da temperatura e, para a faixa restante da fração molar de MEG livre de solvente, tem um comportamento inverso. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando o bom cálculo.

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00159;
- b) desvio absoluto máximo = 0,01413;
- c) desvio relativo absoluto médio⁶ = 1,08%;
- d) desvio relativo absoluto máximo⁶ = 21,51%.

Os valores do desvio absoluto médio = 0,00159 e do desvio relativo absoluto médio = 1,08% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. O ponto experimental com desvio relativo absoluto máximo = 21,51%não foi considerado ruim devido ao seu baixo desvio absoluto (0,00172). Sendo assim, foi considerado que os valores calculados para a molalidade do NaCl na mistura água e MEG representaram, de forma aceitável, os dados experimentais comparativos usados.

 $^{^{6}}$ Foram desconsiderados 18 pontos experimentais.

4.1.2.10 Logaritmo de excesso do coeficiente de atividade do NaCl na mistura água e MEG (Predição)

A Figura 43 representa as isotermas do logaritmo de excesso do coeficiente de atividade do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Predição). Nela, as regiões de decrescimento e crescimento correspondem, aproximadamente, as observadas na Figura 42. Nota-se, também, o fenômeno de inversão em torno do mesmo valor citado na Figura 42, ou seja, no valor aproximado de 0,1 para a fração molar de MEG livre de solvente. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando a boa predição.

Figura 43 – Logaritmo de excesso do coeficiente de atividade do NaCl na mistura água e MEG em função da fração molar de MEG livre de NaCl (Predição).

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00160;
- b) desvio absoluto máximo = 0,00482;
- c) desvio relativo absoluto médio⁷ = 0.57%;
- d) desvio relativo absoluto máximo⁷ = 2,82%.

Os valores do desvio absoluto médio = 0,00160 e do desvio relativo absoluto médio = 0,57% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que a estimativa para o logaritmo de excesso do coeficiente de atividade do NaCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

⁷ Foram desconsiderados 5 pontos experimentais.

4.2 Sistemas com KCl

4.2.1 Sistemas com solvente simples

4.2.1.1 Sistema H₂O+KCI

Dados de solubilidade de KCl em água, selecionados dos sistemas estudados (Tabela 4 e Tabela 5), foram ajustados por regressão não linear, conforme descrito na subseção 3.12.5, utilizando-se a Equação 3.36. Resultando, após desprezar-se b_0 e outras simplificações, na equação:

$$b_{\text{KCl}}^{\{\text{H}_2\text{O}\}} = \exp\left(\theta_0 + \theta_1 T + \theta_2 \ln T\right) \tag{4.4}$$

onde $\theta_0 = \Theta_0$, $\theta_1 = \Theta_1 \in \theta_2 = \Theta_{-2}$.

A análise estatística do ajuste por regressão não linear foi realizada com um *nível* da significância (α) de 5,0%, obtendo-se:

- a) desvio padrão assintótico: $s = 0,025689 \text{ mol} \cdot \text{kg}^{-1}$;
- b) coeficiente de determinação: $R^2 = 0,99933;$
- c) coeficiente de determinação ajustado: $R_{ajustado}^2 = 0,99927.$

A Tabela 17 apresenta a *análise de variância* (ANOVA) do ajuste por regressão não linear.

Tabela 17 – ANOVA (Sistema H_2O+KCl).

Fonte	GL	Soma de Quadrados	Quadrado Médio	F-valor	$\Pr(>F)$
Regressão Resíduo Total Total Corrigido	$ \begin{array}{r} 3 \\ 22 \\ 25 \\ 24 \end{array} $	$759,88 \\ 0,014518 \\ 759,89 \\ 21,661$	253,29 0,00065993	383820,0	0,00000

Fonte: O autor.

A Tabela 18 apresenta os parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.4, juntamente com seus intervalos de confiança. O valor, para este caso, do t de Student crítico foi: t-crítico = 2,0739.

Parâmetro	Estimativa	Erro Padrão Assintótico	t-valor	$\Pr(> t)$	Intervalo d Assintóti	e Confiança ico 95,0%
					Inferior	Superior
$egin{array}{c} heta_0 \ heta_1 \ heta_2 \end{array}$	-28,334 -0,011414 5,8452	$\begin{array}{c} 1,474 \\ 0,000943 \\ 0,3079 \end{array}$	-19,2259 -12,1105 18,9840	0,00000 0,00000 0,00000	-31,391 -0,013369 5,2066	-25,278 -0,009460 6,4837

Tabela 18 – Parâmetros obtidos (Sistema H₂O+KCl).

Fonte: O autor.

José Augusto Furtado de Oliveira, Junho/2014

A Tabela 19 apresenta a *matriz de correlação* dos parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.4.

Parâmetro	$ heta_0$	$ heta_1$	θ_2
$egin{array}{c} heta_0 \ heta_1 \ heta_2 \end{array}$	1,00000	0,99899	-0,99997
	0,99899	1,00000	-0,99931
	-0,99997	-0,99931	1,00000

Tabela 19 – Matriz de Correlação (Sistema H_2O+KCl).

Fonte: O autor.

Algumas outras medidas estatísticas básicas foram calculadas:

- a) Desvio Absoluto Médio = $0,01535 \text{ mol} \cdot \text{kg}^{-1}$
- b) Desvio Absoluto Máximo = $0,07874 \text{ mol} \cdot \text{kg}^{-1}$
- c) Desvio Relativo Absoluto Médio = 0.31%
- d) Desvio Relativo Absoluto Máximo = 1,62%

O ajuste foi bastante satisfatório, o que é evidenciado pelo valor $R^2 = 0,99933$ para o coeficiente de determinação, pela ANOVA (Tabela 17) com Pr(>F) = 0,00000 e pelo desvio relativo absoluto médio = 0,31%. Todos os parâmetros obtidos (Tabela 18) contribuem significativamente para o modelo, pois, possuem baixos valores de Pr(>|t|). Estes, também, apresentam significante correlação entre si, conforme evidenciado pelos altos valores absolutos na matriz de correlação (Tabela 19).

Observa-se, na Figura 44, que a molalidade do KCl aumenta com a temperatura, de forma quase linear, em toda a faixa de temperatura correlacionada. Os dados experimentais, de todos os autores, dispuseram-se em torno da curva, confirmando um bom ajuste.

Figura 44 – Molalidade do KCl em H₂O em função da Temperatura.

Fonte: O autor.

Tese de Doutorado. PPGEQ/UFRN

4.2.1.2 Sistema MEG+KCI

Dados de solubilidade de KCl em MEG, selecionados dos sistemas estudados (Tabela 4 e Tabela 5), foram ajustados por regressão não linear, conforme descrito na subseção 3.12.5, utilizando-se a Equação 3.36. Resultando, após desprezar-se b_0 e outras simplificações, na equação:

$$b_{\text{KCl}}^{\{\text{MEG}\}} = \exp\left(\theta_0 + \theta_1 T\right) \tag{4.5}$$

onde $\theta_0 = \Theta_0 \in \theta_1 = \Theta_1$.

A análise estatística do ajuste por regressão não linear foi realizada com um *nível* da significância (α) de 5,0%, obtendo-se:

- a) desvio padrão assintótico: $s = 0,021080 \text{ mol} \cdot \text{kg}^{-1}$;
- b) coeficiente de determinação: $R^2 = 0.94418$;
- c) coeficiente de determinação ajustado: $R_{ajustado}^2 = 0.93301$.

A Tabela 20 apresenta a *análise de variância* (ANOVA) do ajuste por regressão não linear.

Fonte	GL	Soma de Quadrados	Quadrado Médio	F-valor	$\Pr(>F)$
Regressão Resíduo Total Total Corrigido	2 5 7 6	$\begin{array}{c} 4,0137\\ 0,0022219\\ 4,0160\\ 0,039801\end{array}$	$2,0069 \\ 0,00044437$	4516,2	0,00022

Tabela 20 – ANOVA (Sistema MEG+KCl).

Fonte: O autor.

A Tabela 21 apresenta os parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.5, juntamente com seus intervalos de confiança. O valor, para este caso, do t de Student crítico foi: t-crítico = 2,5706.

Tabela 21 – Parâmetros obtidos (Sistema MEG+KCl).

Parâmetro	Estimativa	Erro Padrão Assintótico	\tilde{t} -valor $\Pr(> t]$		Intervalo de Assintóti	e Confiança co 95,0%
					Inferior	Superior
$egin{array}{c} heta_0 \ heta_1 \end{array}$	-1,8722 0,0051201	$0,1658 \\ 0,0005283$	-11,2902 9,6914	$0,00010 \\ 0,00020$	-2,2985 0,0037620	-1,4459 0,0064781

Fonte: O autor.

A Tabela 22 apresenta a *matriz de correlação* dos parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.5.

Tabela 22 – N (S	Iatriz de Sistema N	Correlação IEG+KCl).
Parâmetro	$ heta_0$	$ heta_1$
θ_0	1,00000	-0,99798
θ_1	-0,99798	1,00000

Fonte: O autor.

Algumas outras medidas estatísticas básicas foram calculadas:

- a) Desvio Absoluto Médio = $0,01262 \text{ mol} \cdot \text{kg}^{-1}$
- b) Desvio Absoluto Máximo = $0,03993 \text{ mol} \cdot \text{kg}^{-1}$
- c) Desvio Relativo Absoluto Médio
 = 1.74%
- d) Desvio Relativo Absoluto Máximo = 5,34%

O ajuste foi satisfatório, o que é evidenciado pelo valor $R^2 = 0,944175$ para o coeficiente de determinação, pela ANOVA (Tabela 20) com Pr(>F) = 0,00022 e pelo desvio relativo absoluto médio = 1,74%. Todos os parâmetros obtidos (Tabela 21) contribuem significativamente para o modelo, pois, possuem baixos valores de Pr(>|t|). Estes, também, apresentam significante correlação entre si, conforme evidenciado pelos altos valores absolutos na matriz de correlação (Tabela 22).

Observa-se, na Figura 45, que a molalidade do KCl aumenta com a temperatura, de forma quase linear, em toda a faixa de temperatura correlacionada. Os dados experimentais, de todos os autores, dispuseram-se em torno da curva, confirmando um bom ajuste.

Figura 45 – Molalidade do KCl em MEG em função da Temperatura.

Fonte: O autor.

4.2.2 Sistema com mistura água e MEG ($H_2O+MEG+KCI$)

4.2.2.1 Potencial químico padrão de excesso do KCI na mistura água e MEG (Regressão)

Dados de solubilidade de KCl em água e MEG, selecionados dos sistemas estudados (Tabela 4 e Tabela 5), foram ajustados por regressão não linear, conforme descrito na subseção 3.12.6, utilizando-se a Equação 3.37. Resultando, após desprezar-se b_0 e outras simplificações, na equação:

$$\frac{\left[\mu_{\rm KCl}^{0\{\rm H_2O+MEG\}}\right]^{\rm E}}{\nu RT} = x_{\rm MEG}^{\{\rm H_2O+MEG\}} \left(1 - x_{\rm MEG}^{\{\rm H_2O+MEG\}}\right) \left[\theta_0 + \theta_1 T + (\theta_2 + \theta_3 T) x_{\rm MEG}^{\{\rm H_2O+MEG\}} + (\theta_4 + \theta_5 T) x_{\rm MEG}^{\{\rm H_2O+MEG\}^2}\right]$$
(4.6)

onde $\theta_0 = \Theta_{0,0}, \ \theta_1 = \Theta_{0,1}, \ \theta_2 = \Theta_{1,0}, \ \theta_3 = \Theta_{1,1}, \ \theta_4 = \Theta_{2,0} \ e \ \theta_5 = \Theta_{2,1}.$

A análise estatística do ajuste por regressão não linear foi realizada com um *nível* da significância (α) de 5,0%, obtendo-se:

- a) desvio padrão assintótico: s = 0.021573;
- b) coeficiente de determinação: $R^2 = 0.99703;$
- c) coeficiente de determinação ajustado: $R_{ajustado}^2 = 0,99676.$

A Tabela 23 apresenta a *análise de variância* (ANOVA) do ajuste por regressão não linear.

Tabela 23 – ANOVA (Sistema H₂O+MEG+KCl).

Fonte	GL	Soma de Quadrados	Quadrado Médio	F-valor	$\Pr(>F)$
Regressão Resíduo Total Total Corrigido		$14,219 \\ 0,025131 \\ 14,244 \\ 8,4706$	$2,3699 \\ 0,00046539$	5092,2	0,00000

Fonte: O autor.

A Tabela 24 apresenta os parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.6, juntamente com seus intervalos de confiança. O valor, para este caso,

Tabela 24 – Parâmetros obtidos (Sistema $H_2O+MEG+KCl$).

Parâmetro	Estimativa	Erro Padrão Assintótico	<i>t</i> -valor	$\Pr(> t)$	Intervalo de Confiança Assintótico 95,0%	
					Inferior	Superior
θ_0	1,4330	3,6517	0,3924	0,69629	-5,8882	8,7543
$ heta_1$	0,010232	0,012044	0,8495	0,39934	-0,013915	0,034378
$ heta_2$	-20,276	$16,\!940$	-1,1969	0,23658	-54,239	$13,\!688$
$ heta_3$	0,050807	0,055854	0,9096	0,36705	-0,061173	0,162788
$ heta_4$	12,410	$17,\!368$	0,7145	$0,\!47797$	-22,411	47,231
θ_5	-0,018566	0,057203	-0,3246	0,74676	-0,133251	$0,\!096119$

Fonte: O autor.

José Augusto Furtado de Oliveira, Junho/2014

do t de Student crítico foi: t-crítico = 2,0049.

A Tabela 25 apresenta a *matriz de correlação* dos parâmetros obtidos, do ajuste por regressão não linear, para a Equação 4.6.

Parâmetro	$ heta_0$	$ heta_1$	θ_2	$ heta_3$	$ heta_4$	$ heta_5$
θ_0	1,00000	-0,99955	-0,94216	0,94194	0,86660	-0,86704
$ heta_1$	-0,99955	1,00000	0,94163	-0,94227	-0,86583	0,86707
$ heta_2$	-0,94216	0,94163	1,00000	-0,99954	-0,97823	0,97836
$ heta_3$	0,94194	-0,94227	-0,99954	1,00000	0,97731	-0,97838
$ heta_4$	0,86660	-0,86583	-0,97823	0,97731	1,00000	-0,99950
θ_5	-0,86704	$0,\!86707$	$0,\!97836$	-0,97838	-0,99950	1,00000

Tabela 25 – Matriz de Correlação (Sistema H₂O+MEG+KCl).

Fonte: O autor.

Algumas outras medidas estatísticas básicas foram calculadas:

- a) Desvio Absoluto Médio = 0.01215
- b) Desvio Absoluto Máximo = 0,09846
- c) Desvio Relativo Absoluto Médio⁸ = 14,88%
- d) Desvio Relativo Absoluto Máximo⁸ = 197,84%

O ajuste foi satisfatório, o que é evidenciado pelo valor $R^2 = 0,99703$ para o coeficiente de determinação, pela ANOVA (Tabela 14) com Pr(>F) = 0,00000 e visualmente pela Figura 46, mesmo com um desvio relativo absoluto médio = 14,88%. O ponto

Fonte: O autor.

⁸ Foram desconsiderados 28 pontos experimentais.

experimental com desvio relativo absoluto máximo = 197,84% não foi considerado ruim devido ao seu baixo desvio absoluto (0,00609). Todos os parâmetros obtidos (Tabela 24), dentro do nível de significância adotado (5%), foram considerados, individualmente, não significativos para o modelo por possuirem |t-valor|<t-crítico, o que gerou altos valores para $\Pr(>|t|)$. Estes, entretanto, apresentaram significante correlação entre si, conforme evidenciado pelos altos valores absolutos na matriz de correlação (Tabela 25). Este fato, juntamente os valores de R^2 e da ANOVA, fizeram com que, coletivamente, os parâmetros obtidos fossem considerados relevantes para o modelo.

Observa-se, na Figura 46, que o potencial químico padrão de excesso do KCl na mistura água e MEG, nas diversas isotermas, cresce desde zero até um valor máximo correspondente a fração molar de MEG livre de solvente próximo a 0,6 e, depois, decresce até o valor zero. Nota-se, também, que o potencial químico padrão de excesso do KCl na mistura água e MEG, para cada fração molar de MEG livre de solvente, aumenta com o aumento da temperatura. De todos os autores, somente os dados experimentais de Zhou et al. (2010), apresentaram um maior afastamento da respectiva isoterma, os demais, dispuseram-se em torno das respectivas isotermas, confirmando o bom ajuste.

4.2.2.2 Potencial químico padrão de excesso do KCI na mistura água e MEG (Predição)

A Figura 47 representa uma isoterma do potencial químico padrão de excesso do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl (Predição). Nela, as regiões de crescimento e decrescimento correspondem, aproximadamente, as observadas na Figura 46. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando a boa predição.

Figura 47 – Potencial químico padrão de excesso do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl (Predição).

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00378;
- b) desvio absoluto máximo = 0,01199;
- c) desvio relativo absoluto médio⁹ = 0.65%;
- d) desvio relativo absoluto máximo⁹ = 1,33%.

Os valores do desvio absoluto médio = 0,00378 e do desvio relativo absoluto médio = 0,65% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que a estimativa para o potencial químico padrão de excesso do KCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

4.2.2.3 Molalidade do KCI na mistura água e MEG

Observa-se, na Figura 48, que a molalidade do KCl na mistura água e MEG, nas diversas isotermas, diminui, a razão inferior que a linear, com o aumento da fração molar de MEG livre de solvente em toda a faixa desta. Nota-se, também, que a molalidade do KCl na mistura água e MEG, para cada fração molar de MEG livre de solvente, aumenta com o aumento da temperatura. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando o bom cálculo.

Figura 48 – Molalidade do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl.

Fonte: O autor.

⁹ Foi desconsiderado 1 ponto experimental.

Algumas medidas estatísticas básicas, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = $0,02489 \text{ mol} \cdot \text{kg}^{-1}$;
- b) desvio absoluto máximo = $0,10623 \text{ mol} \cdot \text{kg}^{-1};$
- c) desvio relativo absoluto médio = 1,58%;
- d) desvio relativo absoluto máximo = 10,94%.

Os valores do desvio absoluto médio = $0,02489 \text{ mol} \cdot \text{kg}^{-1}$ e do valor do desvio relativo absoluto médio = 1,58% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que os valores calculados para a molalidade do KCl na mistura água e MEG representaram, de forma aceitável, os dados experimentais comparativos usados.

4.2.2.4 Molalidade do KCl na mistura água e MEG (Predição)

A Figura 49 representa a isoterma da molalidade do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl (Predição). Nela, a forma como ocorre o decrescimento da molalidade do KCl na mistura água e MEG corresponde, aproximadamente, a observada na Figura 48. Os dados experimentais, de todos os autores, dispuseram-se em torno da isoterma, confirmando a boa predição.

Figura 49 – Isoterma da molalidade do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl (Predição).

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

a) desvio absoluto médio = $0,06224 \text{ mol} \cdot \text{kg}^{-1}$;

- b) desvio absoluto máximo = $0,10643 \text{ mol} \cdot \text{kg}^{-1};$
- c) desvio relativo absoluto médio = 2,96%;
- d) desvio relativo absoluto máximo = 8,01%.

Os valores do desvio absoluto médio = $0,06224 \text{ mol} \cdot \text{kg}^{-1}$ e do desvio relativo absoluto médio = 2,96% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que a estimativa para a molalidade do KCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

4.2.2.5 Logaritmo de excesso da molalidade do KCI na mistura água e MEG

Observa-se, na Figura 50, que o logaritmo de excesso da molalidade do KCl na mistura água e MEG, nas diversas isotermas, decresce desde zero até um valor mínimo correspondente a fração molar de MEG livre de solvente próximo a 0,4 e, depois, cresce até o valor zero. Nota-se, também, que o logaritmo de excesso da molalidade do KCl na mistura água e MEG, para cada fração molar de MEG livre de solvente, aumenta com o aumento da temperatura. De todos os autores, somente os dados experimentais de Zhou et al. (2010), apresentaram um maior afastamento da respectiva isoterma, os demais, dispuseram-se em torno das respectivas isotermas, confirmando o bom cálculo.

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,01593;
- b) desvio absoluto máximo = 0,11588;

- c) desvio relativo absoluto médio¹⁰ = 15,58%;
- d) desvio relativo absoluto máximo¹⁰ = 109,53%.

Os valores do desvio absoluto médio = 0,01593 e do desvio relativo absoluto médio = 15,58% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. O ponto experimental com desvio relativo absoluto máximo = 109,53%não foi considerado ruim devido ao seu baixo desvio absoluto (0,00487). Sendo assim, foi considerado que os valores calculados para o logaritmo de excesso da molalidade do KCl na mistura água e MEG representaram, de forma aceitável, os dados experimentais comparativos usados.

4.2.2.6 Logaritmo de excesso da molalidade do KCI na mistura água e MEG (Predição)

A Figura 51 representa a isoterma do logaritmo de excesso da molalidade do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl (Predição). Nela, as regiões de decrescimento e crescimento correspondem, aproximadamente, as observadas na Figura 50. Nota-se, como na Figura 50, que o logaritmo de excesso da molalidade do KCl na mistura água e MEG, para cada fração molar de MEG livre de solvente, aumenta com o aumento da temperatura. Os dados experimentais dispuseram-se em torno da isoterma, confirmando a boa predição.

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

a) desvio absoluto médio = 0,03039;

¹⁰ Foram desconsiderados 14 pontos experimentais.

- b) desvio absoluto máximo = 0,08347;
- c) desvio relativo absoluto médio¹¹ = 10,95%;
- d) desvio relativo absoluto máximo¹¹ = 23,37%.

Os valores do desvio absoluto médio = 0,03039 e do desvio relativo absoluto médio = 10,95% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que a estimativa para o logaritmo de excesso da molalidade do NaCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

4.2.2.7 Coeficiente de atividade do KCI na mistura água e MEG

Observa-se, na Figura 52, que o coeficiente de atividade do KCl na mistura água e MEG, nas diversas isotermas, diminui da faixa de 0,6-0,7 até um valor mínimo correspondente a fração molar de MEG livre de solvente próximo a 0,6 e, depois, cresce até a faixa de 1,0-1,3. Nota-se, também, que as isotermas se cruzam nos valores aproximados de 0,2 e 0,7 para a fração molar de MEG livre de solvente. Para a faixa 0,2-0,7, o coeficiente de atividade do KCl na mistura água e MEG diminui com o aumento da temperatura e, para as faixas restantes de fração molar de MEG livre de solvente, tem um comportamento inverso. Logo, os maiores afastamentos da idealidade ocorrem no mínimo interno a faixa 0,2-0,7 e em MEG puro. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando o bom cálculo.

Fonte: O autor.

¹¹ Foi desconsiderado 1 ponto experimental.

Algumas medidas estatísticas básicas, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00133;
- b) desvio absoluto máximo = 0,00933;
- c) desvio relativo absoluto médio = 0,21%;
- d) desvio relativo absoluto máximo = 1,76%.

Os valores do desvio absoluto médio = 0,00133 e do desvio relativo absoluto médio = 0,21% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que os valores calculados para o coeficiente de atividade do KCl na mistura água e MEG representaram, de forma aceitável, os dados experimentais comparativos usados.

4.2.2.8 Coeficiente de atividade do KCI na mistura água e MEG (Predição)

A Figura 53 representa a isoterma do coeficiente de atividade do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl (Predição). Nela, as regiões de decrescimento e crescimento correspondem, aproximadamente, as observadas na Figura 52. Os dados experimentais, de todos os autores, dispuseram-se em torno da isoterma, confirmando a boa predição.

Figura 53 – Coeficiente de atividade do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl (Predição).

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

a) desvio absoluto médio = 0,00205;

- b) desvio absoluto máximo = 0,00571;
- c) desvio relativo absoluto médio = 0.38%;
- d) desvio relativo absoluto máximo = 1,21%.

Os valores do desvio absoluto médio = 0,00205 e do desvio relativo absoluto médio = 0,38% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que a estimativa para o coeficiente de atividade do KCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

4.2.2.9 Logaritmo de excesso do coeficiente de atividade do KCI na mistura água e MEG

Observa-se, na Figura 54, que o logaritmo de excesso do coeficiente de atividade do KCl na mistura água e MEG, nas diversas isotermas, decresce desde zero até um valor mínimo correspondente a fração molar de MEG livre de solvente próximo a 0,7 e, depois, cresce até o valor zero. Nota-se, também, que o logaritmo de excesso do coeficiente de atividade do KCl na mistura água e MEG, para cada fração molar de MEG livre de solvente, diminui com o aumento da temperatura. Os dados experimentais, de todos os autores, dispuseram-se em torno das respectivas isotermas, confirmando o bom cálculo.

Figura 54 – Logaritmo de excesso do coeficiente de atividade do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl.

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00209;
- b) desvio absoluto máximo = 0,01742;

- c) desvio relativo absoluto médio¹² = 6,21%;
- d) desvio relativo absoluto máximo¹² = 89,24%.

Os valores do desvio absoluto médio = 0,00209 e do desvio relativo absoluto médio = 6,21% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. O ponto experimental com desvio relativo absoluto máximo = 89,24%não foi considerado ruim devido ao seu baixo desvio absoluto (0,00122). Sendo assim, foi considerado que os valores calculados para a molalidade do NaCl na mistura água e MEG representaram, de forma aceitável, os dados experimentais comparativos usados.

4.2.2.10 Logaritmo de excesso do coeficiente de atividade do KCI na mistura água e MEG (Predição)

A Figura 55 representa a isoterma do logaritmo de excesso do coeficiente de atividade do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl (Predição). Nela, as regiões de decrescimento e crescimento correspondem, aproximadamente, as observadas na Figura 54. Os dados experimentais dispuseram-se em torno da isoterma, confirmando a boa predição.

Figura 55 – Logaritmo de excesso do coeficiente de atividade do KCl na mistura água e MEG em função da fração molar de MEG livre de KCl (Predição).

Fonte: O autor.

Algumas medidas estatísticas básicas, para os desvios entre valores estimados e pontos experimentais, foram geradas:

a) desvio absoluto médio = 0,00378;

¹² Foram desconsiderados 14 pontos experimentais.

- b) desvio absoluto máximo = 0,01199;
- c) desvio relativo absoluto médio¹³ = 0.65%;
- d) desvio relativo absoluto máximo¹³ = 1,33%.

Os valores do desvio absoluto médio = 0,00378 e do desvio relativo absoluto médio = 0,65% indicam uma representatividade satisfatória em relação aos valores experimentais confrontados. Sendo assim, foi considerado que a estimativa para o logaritmo de excesso do coeficiente de atividade do KCl na mistura água e MEG previu, de forma aceitável, os dados experimentais comparativos usados.

4.3 Validação do Modelo de Pitzer implementado

A subrotina do *Modelo de Pitzer*, utilizada pelo programa *JAFOSSMS* (seção 3.13), foi validada com base nos dados de Hamer e Wu (1972). A validação foi feita para o coeficiente de atividade. Os sistemas utilizados na validação consistiam de um sal (NaCl ou KCl) em água. Apresenta-se, a seguir, os resultados obtidos neste processo de validação.

4.3.1 Coeficiente de atividade do NaCl em água

Observa-se, na Figura 56, que o coeficiente de atividade do NaCl em água a 25 °C, como função da molalidade do NaCl, calculado pelo programa JAFOSSMS (seção 3.13), ajusta-se muito bem aos dados experimentais de Hamer e Wu (1972).

Figura 56 – Modelo de Pitzer implementado ($\gamma_{\text{NaCl}}^{\{\text{H}_2\text{O}\}} \times b_{\text{NaCl}}^{\{\text{H}_2\text{O}\}}$ a 25 °C).

Fonte: O autor.

¹³ Foi desconsiderado 1 ponto experimental.

Algumas medidas estatísticas básicas, relativas a Figura 56, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00089;
- b) desvio absoluto máximo = 0,00418;
- c) desvio relativo absoluto médio = 0.11%;
- d) desvio relativo absoluto máximo = 0,42%.

Os valores baixos destes desvios demostraram uma grande precisão no cálculo do coeficiente de atividade do NaCl em água a 25 $^{\circ}$ C.

4.3.2 Coeficiente de atividade do KCI em água

Observa-se, na Figura 57, que o coeficiente de atividade do KCl em água a 25 °C, como função da molalidade do KCl, calculado pelo programa JAFOSSMS (seção 3.13), ajusta-se bem aos dados experimentais de Hamer e Wu (1972). Nota-se, que o desvio em relação aos dados experimentais aumenta com o aumento da molalidade do KCl.

Fonte: O autor.

Algumas medidas estatísticas básicas, relativas a Figura 57, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00409;
- b) desvio absoluto máximo = 0,01669;
- c) desvio relativo absoluto médio = 0,69%;
- d) desvio relativo absoluto máximo = 2,81%.

Os valores baixos destes desvios demostraram uma boa precisão no cálculo do coeficiente de atividade do KCl em água a 25 °C.

O programa *JAFOSSMS* (seção 3.13) calcula os parâmetros do *Modelo de Pitzer* para o KCl, em função da temperatura, pelas equações de Archer (1999) (subseção 3.8.4.2). Estas equações apresentam uma precisão muito boa, no então, para demostrar a influência dos parâmetros do *Modelo de Pitzer* no cálculo do coeficiente de atividade, utilizou-se os parâmetros de Zemaitis Jr. et al. (1986, p. 103). Os resultados obtidos com estes parâmetros são mostrados na Figura 58. Nesta, observa-se, que o coeficiente de atividade do KCl em água a 25 °C, como função da molalidade do KCl, calculado pelo programa *JAFOSSMS* (seção 3.13), ajusta-se muito bem aos dados experimentais de Hamer e Wu (1972).

Figura 58 – Modelo de Pitzer implementado ($\gamma_{\text{KCl}}^{\text{\{H_2O\}}} \times b_{\text{KCl}}^{\text{\{H_2O\}}}$) utilizando os parâmetros de Zemaitis Jr. et al. (1986, p. 103).

Fonte: O autor.

Algumas medidas estatísticas básicas, relativas a Figura 58, para os desvios entre valores calculados e pontos experimentais, foram geradas:

- a) desvio absoluto médio = 0,00052;
- b) desvio absoluto máximo = 0,00169;
- c) desvio relativo absoluto médio = 0.08%;
- d) desvio relativo absoluto máximo = 0,30%.

Os valores baixos destes desvios demostraram uma grande precisão no cálculo do coeficiente de atividade do KCl em água a 25 °C. Estes resultados confirmam que os parâmetros de Zemaitis Jr. et al. (1986, p. 103) são melhores que os calculados utilizando as equações de Archer (1999) (subseção 3.8.4.2). Entretanto, os parâmetros de Zemaitis Jr. et al. (1986, p. 103) são apenas para 25 °C, enquanto que as equações de Archer (1999) (subseção 3.8.4.2) cobrem uma ampla faixa de temperatura.

4.4 Comparação do Modelo JAFOSSMS com outros modelos

O *Modelo JAFOSSMS* foi comparado com o *Modelo Ideal*, extremamente simples, e com o *Modelo UNIQUAC+DH*, de maior complexidade, usado em Chiavone-Filho e Rasmussen (2000).

4.4.1 Modelo Ideal

A molalidade do NaCl na mistura água e MEG foi calculada em função da fração molar do MEG livre de sal, para 6 isotermas, usando-se tanto o *Modelo JAFOSSMS* quanto o *Modelo Ideal* (Equação 2.38). Estes resultados são apresentados na Figura 59.

Figura 59 – Comparação do Modelo JAFOSSMS com o Modelo Ideal (NaCl).

Fonte: O autor.

Observa-se, na Figura 59, a excelente representatividade dos dados experimentais pelo *Modelo JAFOSSMS* e o afastamento deste em relação ao *Modelo Ideal*, exceto nos extremos de fração molar de MEG livre de sal. Na Tabela 26, nota-se os baixos desvios dos dados experimentais em relação ao *Modelo JAFOSSMS* e os altos desvios em relação ao *Modelo Ideal*. Confirmando a melhor representatividade do *Modelo JAFOSSMS*.

Tabela 26 – Comparação do Modelo JAFOSSMS com o Modelo Ideal (NaCl).

Modelo JAFOSSMS	Modelo Ideal
$0,02186 \text{ mol} \cdot \text{kg}^{-1}$	$0,58587 \text{ mol} \cdot \text{kg}^{-1}$
$0,12584 \text{ mol} \cdot \text{kg}^{-1}$	$1,26178 \text{ mol} \cdot \text{kg}^{-1}$
$0,\!83\%$	$15{,}79\%$
$4,\!27\%$	34,04%
	$\begin{array}{c} \mbox{Modelo JAFOSSMS} \\ \hline 0,02186 \mbox{ mol} \cdot \mbox{kg}^{-1} \\ 0,12584 \mbox{ mol} \cdot \mbox{kg}^{-1} \\ 0,83\% \\ 4,27\% \end{array}$

Fonte: O autor.

José Augusto Furtado de Oliveira, Junho/2014

A molalidade do KCl na mistura água e MEG foi calculada em função da fração molar do MEG livre de sal, para 3 isotermas, usando-se tanto o *Modelo JAFOSSMS* quanto o *Modelo Ideal* (Equação 2.38). Estes resultados são apresentados na Figura 60 .

Figura 60 – Comparação do Modelo JAFOSSMS com o Modelo Ideal (KCl).

Observa-se, na Figura 60, a excelente representatividade dos dados experimentais pelo *Modelo JAFOSSMS* e o afastamento deste em relação ao *Modelo Ideal*, exceto nos extremos de fração molar de MEG livre de sal. Na Tabela 27, nota-se os baixos desvios dos dados experimentais em relação ao *Modelo JAFOSSMS* e os altos desvios em relação ao *Modelo Ideal*. Confirmando, novamente, a melhor representatividade do *Modelo JAFOSSMS*.

Tabela 27 – Comparação do Modelo JAFOSSMS com o Modelo Ideal (KCl).

Desvio	Modelo JAFOSSMS	Modelo Ideal
Desvio Absoluto Médio Desvio Absoluto Máximo Desvio Relativo Absoluto Médio Desvio Relativo Absoluto Máximo	$\begin{array}{c} 0,02489 \ \mathrm{mol} \cdot \mathrm{kg}^{-1} \\ 0,10623 \ \mathrm{mol} \cdot \mathrm{kg}^{-1} \\ 1,58\% \\ 10,94\% \end{array}$	$\begin{array}{c} 0,45212 \ \mathrm{mol}\cdot\mathrm{kg}^{-1} \\ 1,11111 \ \mathrm{mol}\cdot\mathrm{kg}^{-1} \\ 17,22\% \\ 37,59\% \end{array}$

Fonte: O autor.

4.4.2 Modelo UNIQUAC+DH

Uma comparação quantitativa foi feita entre o *Modelo JAFOSSMS* e o modelo utilizado em Chiavone-Filho e Rasmussen (2000), aqui chamado *Modelo UNIQUAC+DH*. Os cálculos realizados em Chiavone-Filho e Rasmussen (2000), foram feitos por meio do programa PARASOLY (CHIAVONE-FILHO, 1993). Para que a comparação fosse possível

Fonte: O autor.

os valores de solubilidade, obtidos pelo *Modelo JAFOSSMS*, foram convertidos para fração molar de KCl em base iônica mediante a Equação 4.7, pois, esta foi usada em Chiavone-Filho e Rasmussen (2000).

$$x_{\rm MX}^{\rm ionizada} = \frac{\nu x_{\rm MX}}{1 + (\nu - 1) x_{\rm MX}} \tag{4.7}$$

onde $x_{MX}^{ionizada}$ é a fração molar de MX em base ionizada. Na Tabela 28, apresenta-se todos os dados utilizados nesta comparação

Tabela 28 – Dados de equilíbrio usados na comparação do *Modelo JAFOSSMS* com o *Modelo UNIQUAC+DH*.

T (K)	r'	$x_{\rm KCl}$ (Bas	se Não Ionizada)	$x_{\rm KCl}$ (Base Ionizada)		
- (II)	² H ₂ O	Experimental	Modelo JAFOSSMS	Experimental	Modelo JAFOSSMS	Modelo UNIQUAC+DH
298,15	0,00041	0,04182	0,04208	0,08028	0,08076	0,08021
298,15	0,17754	0,03962	0,04114	0,07622	0,07903	0,07790
298,15	0,36728	0,04121	0,04217	0,07916	0,08093	0,07851
298, 15	0,64470	0,04778	0,04866	0,09120	0,09280	0,09058
298, 15	0,81235	0,05750	0,05713	0,10875	0,10809	0,10996
298, 15	0,92412	0,06854	0,06800	0,12829	0,12734	0,13035
298, 15	1,00000	0,07971	0,07939	0,14765	0,14710	0,14757
323, 15	0,00041	0,04778	0,04756	0,09120	0,09080	0,08978
323, 15	0,17754	0,04751	0,04773	0,09071	0,09111	0,08997
323, 15	0,36728	0,04935	0,04886	0,09406	0,09317	0,09278
323, 15	$0,\!64470$	0,05834	0,05841	0,11025	0,11037	0,10879
323, 15	0,81235	0,07008	0,07015	0,13098	0,13110	0,13010
323, 15	0,92412	0,08266	0,08265	0,15270	0,15268	0,15103
323, 15	1,00000	0,09370	0,09403	0,17134	0,17190	0,16834
348, 15	0,00041	0,05361	0,05370	0,10176	0,10193	0,10223
$348,\!15$	$0,\!17754$	0,05410	0,05299	0,10265	0,10065	0,10409
348, 15	0,36728	0,05749	0,05313	0,10873	0,10090	0,10954
348, 15	$0,\!64470$	0,06899	0,06595	0,12908	0,12374	0,12970
$348,\!15$	0,81235	0,08239	0,08154	0,15224	0,15078	0,15338
$348,\!15$	0,92412	0,09524	0,09595	0,17392	0,17510	0,17551
$348,\!15$	1,00000	0,10675	0,10763	0,19291	0,19434	0,19360

Fonte: O autor.

Na Tabela 29, apresenta-se a comparação entre o *Modelo JAFOSSMS* e o *Modelo UNIQUAC+DH*. Observando os resultados, notou-se que, embora o *Modelo UNIQUAC+DH* tenha representado melhor os dados experimentais, dentro das incertezas experimentais, os cálculos resultaram, na realidade, em precisões equivalentes. No entanto, deve-se ressaltar que o *Modelo JAFOSSMS* possui, por ser parametrizado, a vantagem de necessitar de uma menor quantidade de informações para poder-se gerar resultados.

Tabela 29 – Comparação do Modelo JAFOSSMS com o Modelo UNIQUAC+DH.

Desvio	Modelo JAFOSSMS	Modelo UNIQUAC+DH
Desvio Absoluto Médio Desvio Absoluto Máximo Desvio Relativo Absoluto Médio Desvio Relativo Absoluto Máximo	$0,00146 \\ 0,00783 \\ 1,34\% \\ 7,20\%$	$\begin{array}{c} 0,00112 \\ 0,00300 \\ 0,97\% \\ 2,20\% \end{array}$

Fonte: O autor.

CAPÍTULO 5 CONCLUSÕES

5 CONCLUSÕES

Uma metodologia para descrever a solubilidade de sais em mistura de solventes foi desenvolvida partindo-se do *Modelo de Pitzer* (Pitzer (1973)), o qual foi estendido para misturas de solventes pela metodologia adotada por Lorimer (1993). Esta metodologia mostrou-se bastante adequada na descrição dos sistemas estudados neste trabalho de tese de doutorado (Tabela 4 e Tabela 5).

Os resultados obtidos, como foi apresentado no Capítulo 4, demonstraram a precisão da metodologia nos cálculos realizados, dentro das incertezas experimentais, para os sais KCl e NaCl em misturas com água e MEG.

Modelos e métodos de cálculo para propriedades de sais em misturas de solventes são escassos. Logo, a metodologia desenvolvida neste trabalho de tese de doutorado contribui de forma relevante para a área de equilíbrio eletrolítico de sais em misturas de solventes.

A extensão do *Modelo de Pitzer* para misturas de solventes, proposta neste trabalho de tese de doutorado, permite que lacunas existentes em bancos de dados experimentais disponíveis sejam preenchidas.

Além da parte referente ao modelo e metodologia termodinâmicos, foi desenvolvido um aplicativo (Programa *JAFOSSMS*), adequado para cálculos de solubilidade de sais em misturas aquosas contendo MEG, nos modos de correlação e predição. Este aplicativo possui um código muito flexível (Apêndice D) de fácil implementação e adaptação para outras condições que se façam necessárias. Embora o desenvolvimento deste aplicativo tenha sido realizado em Ubuntu[®] (ubuntu.com), usando a linguagem Python (python.org) no ambiente Eclipse (eclipse.org), este aplicativo é totalmente portável para Windows[®] (windows.microsoft.com) e, também, para Mac OS X[®] (apple.com), como apresentado no Apêndice B.

Para trabalhos futuros são feitas as seguintes sugestões:

- a) utilização desta metodologia de cálculo em sistemas com os mesmos solventes e com outras espécies de sal;
- b) utilização desta metodologia de cálculo em sistemas com os mesmos solventes e com mais de um sal;
- c) utilização desta metodologia de cálculo em sistemas com outros solventes e sais;
- d) estudar outros sais presentes na água de produção do campo de Mexilhão;
- e) aplicar o modelo diretamente na modelagem e simulação de processos, como na unidade de regeneração do MEG.

Referências

ABRAMS, D. S.; PRAUSNITZ, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. **AIChE Journal**, American Institute of Chemical Engineers, v. 21, n. 1, p. 116–128, jan. 1975. ISSN 1547-5905. Disponível em: http://doi.wiley.com/10.1002/aic.690210115. Citado na página 33.

ÅKERLÖF, G. DIELECTRIC CONSTANTS OF SOME ORGANIC SOLVENT-WATER MIXTURES AT VARIOUS TEMPERATURES. Journal of the American Chemical Society, ACS Publications, v. 54, n. 11, p. 4125–4139, nov. 1932. Disponível em: <http://pubs.acs.org/doi/abs/10.1021/ja01350a001>. Citado na página 42.

ANDERKO, A.; WANG, P.; RAFAL, M. Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes. Fluid Phase Equilibria, Elsevier Science Publishers B. V., v. 194-197, p. 123–142, mar. 2002. ISSN 0378-3812. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0378381201006458. Citado na página 32.

ANDRADE, A. R. Hidratos no Âmbito da Perfuração: Histórico, Mecanismos de Inibição e Técnicas para Análises de Hidrato. Monografia (Especialização em Engenharia de Dutos) — Departamento de Engenharia Mecânica da PUC-Rio, 2009. Disponível em: http://www.ppgem.ct.utfpr.edu.br/lacit/publicacoes/monografia%20Alex%20R.%20de%20Andrade%20-%20Vers%E3o%20Final.pdf>. Acesso em: 21 jan. 2015. Citado 3 vezes nas páginas 7, 8 e 9.

APPLE.COM. Apple - OS X Yosemite - Overview. Disponível em: ">http://www.apple.com/osx/>. Acesso em: 21 jan. 2015. Citado 4 vezes nas páginas 34, 53, 101 e 121.

ARCHER, D. G. Thermodynamic Properties of the KCl + H₂O System. Journal of Physical and Chemical Reference Data, AIP Publishing, v. 28, n. 1, p. 1–17, maio 1999. ISSN 0047-2689. Disponível em: http://link.aip.org/link/?JPR/28/1/1>. Citado 2 vezes nas páginas 45 e 94.

ASPENTECH.COM. Aspen HYSYS[®] - AspenTech. Disponível em: <http://www.aspentech.com/products/aspen-hysys/>. Acesso em: 21 jan. 2015. Citado 2 vezes nas páginas 33 e 34.

BALDWIN, W. H.; RARIDON, R. J.; KRAUS, K. A. Properties of Organic-Water Mixtures. X. Activity Coefficients of Sodium Chloride at Saturation in Water Mixtures of Polyglycols and Polyglycol Ethers at 50°. **The Journal of Physical Chemistry**, ACS Publications, v. 73, n. 10, p. 3417–3420, out. 1969. Disponível em: <http://pubs.acs.org/doi/abs/10.1021/j100844a045>. Citado 2 vezes nas páginas 28 e 40.

BAPTISTA, J. M. M. Análise da Formação de Hidratos em Atividades de Perfuração de Campos Petrolíferos. Monografia (Projeto Final de Curso), 2007. Disponível em: http://www.ppgem.ct.utfpr.edu.br/lacit/publicacoes/projetos_

 $\label{eq:product} finais/PF\%20-\%20An\%E1lise\%20da\%20Forma\%E7\%E3o\%20de\%20Hidratos\%20em\%20atividades\%20de\%20Perfura\%E7\%E3o\%20de\%20Campos\%20Petrol\%EDferos\%202007.pdf>. Acesso em: 21 jan. 2015. Citado na página 7.$

BELCHIOR, M. GOVERNO FEDERAL E O DESENVOLVIMENTO DE SÃO PAULO. In: **57º Congresso de Municípios Paulistas**. Santos, SP, BRA: [s.n.], 2013. Disponível em: http://www.pac.gov.br/sobre-o-pac/apresentacoes/v/38e11f18. Acesso em: 21 jan. 2015. Citado na página 4.

BIPM. Le Système international d'unités (SI) = The International System of Units (SI). 8th. ed. Sèvres, FRA: [s.n.], 2006. ISBN 92-822-2213-6. Disponível em: <http://www.bipm.org/utils/common/pdf/si_brochure_8.pdf>. Citado na página 41.

BRAUN, N. O.; PERSSON, U. Å.; KARLSSON, H. T. Densities and Viscosities of Mono(ethylene glycol) + 2-Amino-2-methyl-1-propanol + Water. Journal of Chemical & Engineering Data, ACS Publications, v. 46, n. 4, p. 805–808, maio 2001. ISSN 0021-9568. Disponível em: http://pubs.acs.org/doi/abs/10.1021/je010004z>. Citado na página 28.

CAMERON. **PureMEG - MEG reclamation and regeneration technology**. 2012. Disponível em: http://www.c-a-m.com/~/media/1999835b6dfc462ead163ea4464a080f. ashx>. Acesso em: 21 jan. 2015. Citado 2 vezes nas páginas 14 e 15.

CARDOSO, M. J. E. M. Calculation of Phase and Chemical Equilibria in Eletrolyte Sistems. Tese (Doutorado) — Department of Chemical Engineering. Technical University of Denmark; DK-2800 Lyngby, Denmark, 1988. Citado na página 32.

CHEN, C.-C. et al. Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. Part I: Single Solvent, Single Completely Dissociated Electrolyte Systems. **AIChE Journal**, American Institute of Chemical Engineers, v. 28, n. 4, p. 588–596, jul. 1982. ISSN 1547-5905. Disponível em: http://doi.wiley.com/10.1002/aic.690280410. Citado na página 44.

CHEN, C.-C.; SONG, Y. Generalized Electrolyte-NRTL Model for Mixed-Solvent Electrolyte Systems. **AIChE Journal**, American Institute of Chemical Engineers, v. 50, n. 8, p. 1928–1941, ago. 2004. ISSN 1547-5905. Disponível em: <<u>http://doi.wiley.com/10.1002/aic.10151></u>. Citado na página 32.

CHIAVONE-FILHO, O. Phase Behavior of Aqueous Glycol Ether Mixtures: (1) Vapor-Liquid Equilibria (2) Salt Solubility. Tese (Doutorado) — Department of Chemical Engineering. Technical University of Denmark; DK-2800 Lyngby, Denmark, 1993. Citado 2 vezes nas páginas 32 e 96.

CHIAVONE-FILHO, O.; PROUST, P.; RASMUSSEN, P. Vapor-Liquid Equilibria for Glycol Ether + Water Systems. **Journal of Chemical & Engineering Data**, ACS Publications, v. 38, n. 1, p. 128–131, jan. 1993. ISSN 0021-9568. Disponível em: <<u>http://pubs.acs.org/doi/abs/10.1021/je00009a031></u>. Citado na página 29.

CHIAVONE-FILHO, O.; RASMUSSEN, P. Solubilities of Salts in Mixed Solvents. **Journal of Chemical & Engineering Data**, ACS Publications, v. 38, n. 3, p. 367–369, jul. 1993. ISSN 0021-9568. Disponível em: http://pubs.acs.org/doi/abs/10.1021/je00011a009. Citado 2 vezes nas páginas 28 e 40.

_____. Modeling of salt solubilities in mixed solvents. **Brazilian Journal of Chemical Engineering**, Brazilian Society of Chemical Engineering, v. 17, p. 117–131, jun. 2000. ISSN 0104-6632. Disponível em: http://dx.doi.org/10.1590/S0104-6632200000200001. Citado 4 vezes nas páginas 33, 95, 96 e 97.

CLARKE, E. C. W.; GLEW, D. N. Evaluation of Thermodynamic Functions from Equilibrium Constants. **Transactions of the Faraday Society**, RSC Pub, v. 62, p. 539–547, 1966. Disponível em: http://dx.doi.org/10.1039/TF9666200539. Citado na página 47.

COHEN, E. R. et al. (Ed.). Quantities, Units and Symbols in Physical Chemistry. 3rd. ed. Cambridge, GBR: RSC Pub, 2007. ISBN 978-0-85404-433-7. Disponível em: http://amazon.com/o/ASIN/0854044337/>. Citado na página 19.

DAHL, S.; MACEDO, E. A. The MHV2 Model: A UNIFAC-Based Equation of State Model for Vapor-Liquid and Liquid-Liquid Equilibria of Mixtures with Strong Electrolytes. **Industrial & Engineering Chemistry Research**, ACS Publications, v. 31, n. 4, p. 1195–1201, abr. 1992. ISSN 0888-5885. Disponível em: <<u>http://pubs.acs.org/doi/abs/10.1021/ie00004a033></u>. Citado na página 32.

DEBYE, P.; HÜCKEL, E. The theory of electrolytes. I. Lowering of freezing point and related phenomena. **Physikalische Zeitschrift**, S. Hirzel Verlag, v. 24, n. 9, p. 185–206, maio 1923. Citado 2 vezes nas páginas 23 e 24.

ECLIPSE.ORG. Eclipse - The Eclipse Foundation open source community website. Disponível em: http://eclipse.org/home/index.php. Acesso em: 21 jan. 2015. Citado 3 vezes nas páginas 34, 53 e 101.

FIGUEIREDO, C. S. et al. Salt solubility data for sodium chloride and mono ethylene glycol aqueous systems from 293.15 to 403.15 K. Fluid Phase Equilibria, Elsevier Science Publishers B. V., 2014 (em Publicação). ISSN 0378-3812. Citado 2 vezes nas páginas 28 e 40.

FØSBOL, P. L.; THOMSEN, K.; STENBY, E. H. Modeling of the Mixed Solvent Electrolyte System CO₂-Na₂CO₃-NaHCO₃-Monoethylene Glycol-Water. **Industrial & Engineering Chemistry Research**, ACS Publications, v. 48, n. 9, p. 4565–4578, maio 2009. ISSN 0888-5885. Disponível em: http://pubs.acs.org/doi/abs/10.1021/ie801168e. Citado na página 32.

GALANTE, A. Jaqueta da plataforma de Mexilhão segue para a Bacia de Campos - Poder Naval. 2009. Disponível em: http://www.naval.com.br/blog/2009/11/23/jaqueta-da-plataforma-de-mexilhao-segue-para-a-bacia-de-campos/. Acesso em: 21 jan. 2015. Citado na página 4.

GCC.GNU.ORG/C++. GCC, the GNU Compiler Collection- GNU Project -Free Software Foundation (FSF). Disponível em: https://gcc.gnu.org/. Acesso em: 21 jan. 2015. Citado na página 33.

GCC.GNU.ORG/FORTRAN. GNU Fortran- GNU Project - Free Software Foundation (FSF). Disponível em: https://gcc.gnu.org/fortran/>. Acesso em: 21 jan. 2015. Citado na página 33. GREEN, D. W.; PERRY, R. H. **Perry's Chemical Engineers' Handbook, Eighth Edition**. 8th. ed. New York, NY, USA: McGraw-Hill, 2007. ISBN 978-0-07-142294-9. Disponível em: http://amazon.com/o/ASIN/0071422943/. Citado na página 42.

GRENTHE, I.; PLYASUNOV, A. On the use of semiempirical electrolyte theories for modeling of solution chemical data. **Pure and Applied Chemistry**, International Union of Pure and Applied Chemistry, v. 69, n. 5, p. 951–958, jul. 1997. ISSN 0033-4545. Disponível em: http://iupac.org/publications/pac/69/5/0951/. Citado na página 32.

GUGGENHEIM, E. L. The specific thermodynamic properties of aqueous solutions of strong electrolytes. **Philosophical Magazine Series 7**, Taylor & Francis, v. 19, n. 127, p. 588–643, 1935. Disponível em: http://www.tandfonline.com/doi/abs/10.1080/14786443508561403. Citado na página 24.

HAMER, W. J.; WU, Y.-C. Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25 °C. Journal of Physical and Chemical Reference Data, AIP Publishing, v. 1, n. 4, p. 1047–1100, out. 1972. ISSN 0047-2689. Disponível em: http://link.aip.org/link/?JPR/1/1047/1. Citado 3 vezes nas páginas 92, 93 e 94.

ILIUTA, M. C.; THOMSEN, K.; RASMUSSEN, P. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes. Part A. Methanol-water-salt systems. **Chemical Engineering Science**, Elsevier Science Publishers B. V., v. 55, n. 14, p. 2673–2686, abr. 2000. ISSN 0009-2509. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0009250999005345>. Citado na página 32.

ISBIN, H. S.; KOBE, K. A. The Solubility of Some Salts in Ethylenediamine, Monoethanolamine and Ethylene Glycol1. **Journal of the American Chemical Society**, ACS Publications, v. 67, n. 3, p. 464–465, mar. 1945. ISSN 0002-7863. Disponível em: http://pubs.acs.org/doi/abs/10.1021/ja01219a029. Citado 2 vezes nas páginas 28 e 40.

JOUYBAN, A.; SOLTANPOUR, S.; CHAN, H.-K. A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. **International Journal of Pharmaceutics**, Elsevier Science Publishers B. V., v. 269, n. 2, p. 353–360, jan. 2004. ISSN 0378-5173. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0378517303005118. Citado na página 42.

KONTOGEORGIS, G. M.; FOLAS, G. K. Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories. Chichester, GBR: Wiley, 2010. ISBN 978-0-470-69726-9. Disponível em: http://amazon.com/o/ASIN/0470697261/. Citado na página 22.

KOSINSKI, J. J. et al. Modeling acid-base equilibria and phase behavior in mixed-solvent electrolyte systems. Fluid Phase Equilibria, Elsevier Science Publishers B. V., v. 256, n. 1-2, p. 34–41, ago. 2007. ISSN 0378-3812. Disponível em: <<u>http://linkinghub.elsevier.com/retrieve/pii/S0378381206004973></u>. Citado na página 32.

KRAUS, K. A.; RARIDON, R. J.; BALDWIN, W. H. Properties of Organic-Water Mixtures. I. Activity Coefficients of Sodium Chloride, Potassium Chloride, and Barium Nitrate in Saturated Water Mixtures of Glycol, Glycerol, and Their Acetates. Model

Solutions for Hyperfiltration Membranes. Journal of the American Chemical Society, ACS Publications, v. 86, n. 13, p. 2571–2576, jul. 1964. ISSN 0022-3654. Disponível em: http://pubs.acs.org/doi/abs/10.1021/ja01067a010>. Citado 3 vezes nas páginas 28, 40 e 65.

LEE, L. L. A molecular theory of Setchenov's salting-out principle and applications in mixed-solvent electrolyte solutions. Fluid Phase Equilibria, Elsevier Science Publishers B. V., v. 131, n. 1-2, p. 67–82, maio 1997. ISSN 0378-3812. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0378381296031986. Citado na página 30.

LIDE, D. R. (Ed.). CRC Handbook of Chemistry and Physics, 90th Edition (CRC Handbook of Chemistry & Physics). 90. ed. Boca Raton, FL, USA: CRC Press, 2009. ISBN 978-1-4200-9084-0. Disponível em: http://amazon.com/o/ASIN/1420090844/. Citado 4 vezes nas páginas 9, 27, 40 e 48.

LINKE, W. F.; SEIDELL, A. SOLUBILITIEWS INORGANIC AND METAL-ORGANIC COMPOUNDS A - Ir: A Compilation of Solubility Data from the Periodical Literature, VOLUME I, FOURTH EDITION. 4th. ed. Princeton, NJ, USA: Van Nostrand, 1958. Citado na página 27.

_____. SOLUBILITIEWS INORGANIC AND METAL-ORGANIC COMPOUNDS K - Z: A Compilation of Solubility Data from the Periodical Literature, VOLUME II, FOURTH EDITION. 4th. ed. Washington, DC, USA: American Chemical Society, 1965. Citado 2 vezes nas páginas 27 e 40.

LIU, Y.; WATANASIRI, S. Representation of Liquid-Liquid Equilibrium of Mixed-Solvent Electrolyte Systems Using the Extended Electrolyte NRTL Model. Fluid Phase Equilibria, Elsevier Science Publishers B. V., v. 116, n. 1-2, p. 193–200, mar. 1996. ISSN 0378-3812. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/0378381295028870>. Citado na página 32.

LORIMER, J. W. Thermodynamics of solubility in mixed solvent systems. **Pure and Applied Chemistry**, International Union of Pure and Applied Chemistry, v. 65, n. 2, p. 183–191, jul. 1993. ISSN 0033-4545. Disponível em: <http://iupac.org/publications/pac/65/2/0183/>. Citado 9 vezes nas páginas xvi, 29, 31, 32, 33, 43, 46, 47 e 101.

MARCUS, Y. Ion Solvation. Chichester, GBR: Wiley, 1985. ISBN 978-0-471-90756-5. Disponível em: http://amazon.com/o/ASIN/0471907561/. Citado na página 48.

MATHWORKS.COM/MATLAB. **MATLAB - The Language of Technical Computing - B**. Disponível em: <<u>http://www.mathworks.com/products/matlab</u>/>. Acesso em: 21 jan. 2015. Citado na página 34.

MATHWORKS.COM/SIMULINK. **Simulink - Simulation and Model-Based Design**. Disponível em: <<u>http://www.mathworks.com/products/simulink/></u>. Acesso em: 21 jan. 2015. Citado na página 34.

MATPLOTLIB.ORG. matplotlib: python plotting - Matplotlib 1.4.2 documentation. Disponível em: http://matplotlib.org/. Acesso em: 21 jan. 2015. Citado 2 vezes nas páginas 34 e 53.

MOURA, N. R. d. **Desafios Tecnológicos para o Gás Natural**. 2007. Disponível em: http://sites.petrobras.com.br/minisite/premiotecnologia/pdf/TecnologiaGas_DesafiosTecnologicos-GasNatural.pdf>. Acesso em: 21 jan. 2015. Citado na página 6.

NAUMANN, M. P. Oportunidades na Logística de Exploração de Petróleo, Gás e Biocombustíveis. In: 9º Encontro da Arquitetura e da Engenharia Consultiva de São Paulo. Santos, SP, BRA: [s.n.], 2009. Disponível em: <http://www.sinaenco.com.br/downloads/Petrobras.pdf>. Acesso em: 21 jan. 2015. Citado na página 4.

NAZZER, C.; KEOGH, J. Advances in Glycol Reclamation Technology. In: **Offshore Technology Conference**. Houston, TX, USA: [s.n.], 2006. ISBN 978-1-55563-253-3. Disponível em: http://dx.doi.org/10.4043/18010-MS>. Citado 4 vezes nas páginas 10, 11, 12 e 13.

NICOLAISEN, H. Phase equilibria in aqueous electrolyte solutions. Tese (Doutorado) — Department of Chemical Engineering. Technical University of Denmark; DK-2800 Lyngby, Denmark, 1994. Citado na página 32.

NUMPY.ORG. **NumPy - NumPy**. Disponível em: ">http://www.numpy.org/>. Acesso em: 21 jan. 2015. Citado 2 vezes nas páginas 34 e 53.

OLIVEIRA, J. A. F. et al. Levenberg-Marquardt method applied to the determination of vapor-liquid equilibrium model parameters. Latin American Applied Research, v. 44, n. 4, out. 2014. ISSN 0327-0793. Disponível em: http://www.laar.uns.edu.ar/indexes/i44_04.htm. Citado 2 vezes nas páginas 39 e 115.

_____. Modelagem e Simulação da Solubilidade de Sais em Mistura de Solventes em Sistemas Aquosos com dois Sais Fortes e Monoetileno Glicol. In: XVIII COBEQ/V CBTERMO/EBA. Foz do Iguaçu, PR, BRA: [s.n.], 2010. Citado na página 30.

PETROBRAS. Atividade de Produção de Gás e Condensado no Campo de Mexilhão, Bacia de Santos : EIA – Estudo de Impacto Ambiental. 2007. Disponível em: <http://licenciamento.ibama.gov.br/Petroleo/Sistema%20de% 20Producao%20de%20Gas%20Natural%20e%20Condensados%20-%20Campo%20de% 20Mexilhao%20-%20Bacia%20de%20Santos/EIA%20Mexilh%C3%A3o/>. Acesso em: 21 jan. 2015. Citado 3 vezes nas páginas 3, 5 e 39.

PINHO, S. P.; MACEDO, E. A. REPRESENTATION OF SALT SOLUBILITY IN MIXED SOLVENTS: A COMPARATION OF THERMODYNAMIC MODELS. Fluid Phase Equilibria, Elsevier Science Publishers B. V., v. 116, n. 1-2, p. 209–216, mar. 1996. ISSN 0378-3812. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/0378381295028897>. Citado 2 vezes nas páginas 28 e 32.

_____. Solubility of NaCl, NaBr, and KCl in Water, Methanol, Ethanol, and Their Mixed Solvents. Journal of Chemical & Engineering Data, ACS Publications, v. 50, n. 1, p. 29–32, jan. 2005. ISSN 0021-9568. Disponível em: <<u>http://pubs.acs.org/doi/abs/10.1021/je049922y></u>. Citado na página 28.

PITZER, K. S. Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations. **The Journal of Physical Chemistry**, ACS Publications, v. 77, n. 2, p. 268–277, jan. 1973. ISSN 0022-3654. Disponível em: http://doi.org/10.1071/linearity.com
//pubs.acs.org/doi/abs/10.1021/j100621a026>. Citado 4 vezes nas páginas 33, 43, 48 e 101.

_____. Thermodynamics (Mcgraw Hill Series in Advanced Chemistry). 3rd. ed. New York, NY, USA: McGraw-Hill, 1995. ISBN 978-0-07-050221-5. Disponível em: http://amazon.com/o/ASIN/0070502218/>. Citado na página 33.

PRAUSNITZ, J. M.; LICHTENTHALER, R. N.; AZEVEDO, E. G. d. Molecular Thermodynamics of Fluid-Phase Equilibria (3rd Edition). 3rd. ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999. ISBN 978-0-13-977745-5. Disponível em: http://amazon.com/o/ASIN/0139777458/>. Citado 7 vezes nas páginas 21, 22, 24, 25, 26, 33 e 48.

PYTHON.ORG. Welcome to Python.org. Disponível em: ">https://www.python.org/>. Acesso em: 21 jan. 2015. Citado 3 vezes nas páginas 34, 53 e 101.

QT-PROJECT.ORG. **Category:LanguageBindings -> PySide** | **Qt Wiki** | **Qt Project**. Disponível em: <<u>http://qt-project.org/wiki/PySide></u>. Acesso em: 21 jan. 2015. Citado 2 vezes nas páginas 34 e 53.

RENON, H. Models for excess properties of electrolyte solutions: molecular bases and classification, needs and trends for new developments. Fluid Phase Equilibria, Elsevier Science Publishers B. V., v. 116, n. 1-2, p. 217–224, mar. 1996. ISSN 0378-3812. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/0378381295028900>. Citado na página 32.

ROGUEWAVE.COM. **IMSL Numerical Libraries** | **Rogue Wave**. Disponível em: <<u>http://www.roguewave.com/products-services/imsl-numerical-libraries</u>>. Acesso em: 21 jan. 2015. Citado na página 33.

SANDENGEN, K.; KAASA, B. Estimation of Monoethylene Glycol (MEG) Content in Water + MEG + NaCl + NaHCO₃ Solutions. Journal of Chemical & Engineering Data, ACS Publications, v. 51, n. 2, p. 443–447, mar. 2006. ISSN 0021-9568. Disponível em: http://pubs.acs.org/doi/abs/10.1021/je0503711. Citado na página 28.

SANDLER, S. I. Models for Thermodynamic and Phase Equilibria Calculations (Chemical Industries). New York, NY, USA: Marcell Dekker, 1993. ISBN 978-0-8247-9130-8. Disponível em: http://amazon.com/o/ASIN/0824791304/. Citado na página 33.

SCILAB.ORG. **Home - Scilab**. Disponível em: <<u>http://www.scilab.org/></u>. Acesso em: 21 jan. 2015. Citado na página 34.

SCIPY.ORG. **SciPy - SciPy**. Disponível em: http://www.scipy.org/). Acesso em: 21 jan. 2015. Citado 2 vezes nas páginas 34 e 53.

SILVESTER, L. F.; PITZER, K. S. Thermodynamics of Electrolytes. 8. High-Temperature Properties, Including Enthalpy and Heat Capacity, with Application to Sodium Chloride. **The Journal of Physical Chemistry**, ACS Publications, v. 81, n. 19, p. 1822–1828, set. 1977. ISSN 0022-3654. Disponível em: http://pubs.acs.org/doi/abs/10.1021/j100534a007>. Citado na página 45.

SMITH, J. M.; VAN NESS, H.; ABBOTT, M. Introduction to Chemical Engineering Thermodynamics (The Mcgraw-Hill Chemical Engineering Series). 7th. ed. Boston, MA, USA: McGraw-Hill, 2005. ISBN 978-0-07-310445-4. Disponível em: http://amazon.com/o/ASIN/0073104450/. Citado na página 33.

STATOIL. Gas Hydrates as a resource : Technology Readiness Level. 2011. Disponível em: http://nfipweb.org/oneday2011/Gas%20hydrates,%20Technology% 20Readiness%20Level.pdf>. Acesso em: 21 jan. 2015. Citado na página 7.

THOMPSON, A.; TAYLOR, B. N. Guide for the Use of the International System of Units (SI). NIST Special Publication 811 (2008 Edition). Gaithersburg, MD, USA, 2008. Disponível em: http://physics.nist.gov/cuu/pdf/sp811.pdf>. Citado na página 19.

THOMSEN, K. Aqueous electrolytes: model parameters and process simulation. Tese (Doutorado) — Department of Chemical Engineering. Technical University of Denmark; DK-2800 Lyngby, Denmark, 1997. Citado na página 32.

THOMSEN, K.; ILIUTA, M. C.; RASMUSSEN, P. Extended UNIQUAC model for correlation and prediction of vapor-liquid-liquid-solid equilibria in aqueous salt systems containing non-electrolytes. Part B. Alcohol (ethanol, propanols, butanols)-water-salt systems. **Chemical Engineering Science**, Elsevier Science Publishers B. V., v. 59, n. 17, p. 3631–3647, set. 2004. ISSN 0009-2509. Disponível em: <http://linkinghub.elsevier.com/retrieve/pii/S000925090400329X>. Citado na página 32.

TRIMBLE, H. M. Solubilities of Salts in Ethylene Glycol and in Its Mixtures with Water. **Industrial & Engineering Chemistry**, ACS Publications, v. 23, n. 2, p. 165–167, fev. 1931. ISSN 0019-7866. Disponível em: http://pubs.acs.org/doi/abs/10.1021/ ie50254a016>. Citado 2 vezes nas páginas 28 e 40.

TSIERKEZOS, N. G.; MOLINOU, I. E. Thermodynamic Properties of Water + Ethylene Glycol at 283.15, 293.15, 303.15, and 313.15 K. Journal of Chemical & Engineering Data, ACS Publications, v. 43, n. 6, p. 989–993, nov. 1998. ISSN 0021-9568. Disponível em: http://pubs.acs.org/doi/abs/10.1021/je9800914>. Citado na página 28.

UBUNTU.COM. The leading OS for PC, tablet, phone and cloud | Ubuntu. Disponível em: ">http://www.ubuntu.com/>. Acesso em: 21 jan. 2015. Citado 4 vezes nas páginas 34, 53, 101 e 121.

WALAS, S. M. Phase Equilibria in Chemical Engineering. Boston, MA, USA: Butterworth, 1985. ISBN 978-0-409-95162-2. Disponível em: http://amazon.com/o/ASIN/0409951625/. Citado na página 33.

WANG, P. et al. Modeling phase equilibria and speciation in mixed-solvent electrolyte systems: II. Liquid-liquid equilibria and properties of associating electrolyte solutions. Journal of Molecular Liquids, Elsevier Science Publishers B. V., v. 125, n. 1, p. 37–44, mar. 2006. ISSN 0167-7322. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0167732205002060. Citado na página 32.

WANG, P.; ANDERKO, A.; YOUNG, R. D. A speciation-based model for mixedsolvent electrolyte systems. Fluid Phase Equilibria, Elsevier Science Publishers B. V., v. 203, n. 1-2, p. 141–176, dez. 2002. ISSN 0378-3812. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0378381202001784>. Citado na página 32. ZEMAITIS JR., J. F. et al. Handbook of Aqueous Electrolyte Thermodynamics: Theory & Application. New York, NY, USA: Wiley-AIChE, 1986. ISBN 978-0-8169-0350-4. Disponível em: http://amazon.com/o/ASIN/0816903506/. Citado 4 vezes nas páginas xxi, 31, 33 e 94.

ZHOU, Y. et al. Compositions, Densities, and Refractive Indices for the Ternary Systems Ethylene Glycol + NaCl + H_2O , Ethylene Glycol + KCl + H_2O , Ethylene Glycol + RbCl + H_2O , and Ethylene Glycol + CsCl + H_2O at 298.15 K. Journal of Chemical & Engineering Data, ACS Publications, v. 55, n. 3, p. 1289–1294, 2010. Disponível em: http://pubs.acs.org/doi/abs/10.1021/je900630n. Citado 4 vezes nas páginas 28, 40, 83 e 86.

APÊNDICES

APÊNDICE A – Artigo sobre ELV

Este apêndice reproduz o artigo publicado no periódico: *Latin American Applied Research*, sobre regressão de dados de ELV (OLIVEIRA et al., 2014). O programa usado neste artigo, *VLE Regression*, encontra-se no Apêndice C. Segue o artigo:

LEVENBERG-MARQUARDT METHOD APPLIED TO THE DETERMINATION OF VAPOR-LIQUID EQUILIBRIUM MODEL PARAMETERS

J.A.F. OLIVEIRA[†], M.M.L. DUARTE[†], E.L. FOLETTO^{‡,*} and O. CHIAVONE-FILHO[†]

† Chemical Eng. Department, Federal University of Rio Grande do Norte, Natal, 59066-800, Brazil ‡ Chemical Eng. Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil. * efoletto@gmail.com

Abstract- In order to correlate and optimize experimental data either from the laboratory or industry, one needs a robust method of data regression. Among the non-linear parameter estimation methods it may be pointed out of Levenberg, which applies the conversion of an arbitrary matrix into a positive definite one. Later, Marquardt applied the same procedure, calculating λ parameter in an iterative form. The Levenberg-Marquardt algorithm is described and two routine for correlating vaporliquid equilibrium data for pure component and mixtures, based on this efficient method, have been applied. The routines have been written with an interface very accessible for both users and programmers, using Python language. The flexibility of the developed programs for introducing the desired details is quite interesting for both process simulators and modeling properties. Furthermore, for mixtures with electrolytes, it was obtained a coherent and compatible relation for the structural parameters of the salt species, with the aid of the method and the graphical interface designed.

Keywords – Nonlinear Regression, Levemberg-Marquardt Method, Vapor-Liquid Equilibria, Mixed Solvents Electrolyte Systems.

I. INTRODUCTION

The phenomena and properties involved in the chemical processes present, usually, non-linear behavior. Therefore, it is needed a robust method of non-linear regression for providing the required correlation of the experimental data collected, either from the laboratory or from the industry.

Bard (1974) pointed out three methods of parameter estimation, i.e., least squares, maximum likelihood and Bayesian. The method of least squares is the oldest and most widely used estimation procedure. It can be applied directly to a deterministic model, without any knowledge being taken of the probability distribution of the observations. This feature satisfies quite well the propose of correlating most of the desired thermodynamic properties and process variables.

For solving these unconstrained problems, the Levenberg-Marquardt method has proven very reliable results. In this work the Levenberg-Marquardt algoritm is described in a simple form.

This parameter estimation method has been reproduced and applied for the correlation of vapor-liquid equilibrium (VLE) data using activity coefficient and equation of state approaches (Lazzús, 2010; CamachoCamacho *et al.*, 2007). For the first case, an evaluation of the thermodynamic consistency of the data can be provided, since activity coefficient models fulfill the exact definition of partial molar excess Gibbs energy.

Systematic evaluation of thermodynamic properties of solutions of sodium chloride (NaCl) in water, e.g., boiling point and osmotic coefficient, with an extensive experimental database, was provided by Clarke and Glew (1985). VLE calculation for mixed solvents electrolyte systems have been applied using functional group activity coefficient model, i.e., UNIFAC (Kikic et al., 1991). It was taken into account the electrostatic term with Debye-Huckel term, normalized according to the theory of Mc-Millan-Mayer. However, the estimated parameters present scattering and large order of magnitude. Loehe and Donohue (1997) described a survey of the literature models to determine thermodynamic properties of aqueous systems with strong electrolytes. Thomsen et al. (2004) have presented a systematic modeling work with mixed electrolytes and mixed solvents systems for solid-liquid-vapor equilibrium data, using UNIQUAC also. Haghtalab and Peyvandi (2009) have proposed a new version of UNIQUAC model for electrolyte solutions that requires just two fitted interaction parameters per binary aqueous system. The strucparameters of the ionic species were evaluated tural considering solvation for the determination of the radii.

This study aimed to describe the Levenberg-Marquardt computational procedure for estimation of vapor-liquid equilibrium model parameters. Validations of the method are present for pure component vapor pressure and binary VLE data. Application to strong electrolytes in mixed solvents systems has also been performed, using UNIQUAC model. It is proposed a new form to determine structural UNIQUAC parameters of the ions that is compatible with the solvent species parameters.

II. METHODS

A. Levenberg-Marquardt Method The method presented by Levenberg (1944) utilizes a conversion of an arbitrary matrix into a positive definite one. This method rests on the observation that if \underline{P} is any positive definite matrix, then $\underline{A}_i + \lambda \underline{P}$ is positive definite for λ sufficiently large, no matter what \underline{A}_i . Marquardt (1963) suggested an iterative algorithm for the selection of λ .

The importance of working with a definite positive matrix is to satisfy the necessary and sufficient conditions of minimization in the data regression, where the least square of the residuals (e_i) is to be found.

B. Levenberg-Marquardt Algorithm

In this section the Levenberg-Marquardt algorithm applied for a nonlinear parameter estimation is described in four phases. Initialization:

- (i) Enter ρ_{min} (a minimum value of the step length ρ , e.g. 10^{-7}), ϵ (a positive small number, e.g. 10^{-7}), <u>y</u> (vector of the dependent variables), X (matrix of the independent variables) and $\underline{\theta}_1$ (vector of the initial guess of the parameters to be estimated). Set J = 1 and $\lambda = 0.01$ (Marquardt parameter);
- (ii) Calculate \underline{e} (vector of the residuals) and $\Phi_1 = \Phi(\underline{\theta}_1)$ (objective function), where $e_i = y_i - f_i(\underline{X}, \underline{\theta})$ and $\Phi = \sum_i e_i^2$;
- (iii) Calculate \underline{q} (gradient of Φ) and \underline{A} (approximation of the Hessian matrix of the function Φ),

where
$$q_i = \frac{\partial \Phi_i}{\partial \theta_i} = 2\sum_j e_j \frac{\partial e_j}{\partial \theta_i}$$

 $A_{ij} = 2\sum_k \left(\frac{\partial e_k}{\partial \theta_i}\right) \left(\frac{\partial e_k}{\partial \theta_j}\right);$
 $(i \neq i \Rightarrow P = 0)$

(iv) Calculate
$$P \begin{cases} i \neq j \Rightarrow r_{ij} = 0 \\ i = j, A_{ij} = 0 \Rightarrow P_{ij} = 1 \\ i = j, A_{ii} \neq 0 \Rightarrow P_{ii} = A_i \end{cases}$$

(v) Calculate $\underline{A} + \lambda \underline{P}$, reminding that these values may be directly evaluated by:

$$\begin{aligned} A_{ij} + \lambda P_{ij} & \left\{ \begin{matrix} i \neq j \Longrightarrow A_{ij} + \lambda P_{ij} = A_{ij} \\ i = j, A_{ij} = 0 \Longrightarrow A_{ij} + \lambda P_{ij} = \lambda \\ i = j, A_{ij} \neq 0 \Longrightarrow A_{ij} + \lambda P_{ij} = A_{ij} (1 + \lambda) \end{matrix} \right. \end{aligned}$$

- (vi) Calculate $\underline{v} = -(\underline{\underline{A}} + \lambda \underline{\underline{P}})^{-1}q$ (vector in the direction of the proposed step), $\underline{\theta}^{(1)} = \underline{\theta}_1 + \underline{v}$ and $\Phi^{(1)} = \Phi(\theta^{(1)})$, where $(\underline{A} + \lambda \underline{P})^{-1}$ and $\underline{\nu}$ are evaluated by the Cholesky method, see, e.g., Fox (1964), which is specific for the inversion of a definite positive matrix;
- (vii) If $\Phi^{(1)} < \Phi_1$ accept $\underline{\theta}_2 = \underline{\theta}^{(1)}$, replace λ by $max(0.1\,\lambda,\epsilon)$ and go to the step (xxi). Or else, continue from the step (viii); $\Psi^{(1)} = \Phi \left(A \pm \alpha^{(1)} v \right)$ pute $0^{(1)} = 2^{-J}$

(viii) Compute
$$\rho^{(1)} = 2^{-J}$$
, $\Psi^{(1)} = \Phi(\underline{\theta}_1 + \rho^{(1)}\underline{v})$ and
 $\gamma = \underline{q}^T \underline{v}$. With these values
 $\rho^* = \gamma \rho^{(1)^2} / [2(\gamma \rho^{(1)} + \Phi - \Psi^{(1)})]$ is calculated;

$$\int = \gamma \rho^{(1)^2} / \left[2 \left(\gamma \rho^{(1)} + \Phi - \Psi^{(1)} \right) \right] \text{ is calculated;}$$

(ix) If $\Psi^{(1)} < \Phi_1,$ then continue from the step (x). Else, go to the step (xvi);

Extrapolation of p:

(x) Set J equal to the higher integer number that do not overcome the half of *J*;

(xi) If
$$\rho^* \le 0$$
 set $\rho^* = 2^{1-J}$;

- (xii) If $\rho^* > 1.1\rho^{(1)}$ continue on the step (xiii). Else, set $\rho = \rho^{(1)}$ and go to the step (xx);
- (xiii) Compute $\Psi^{(2)} = \Phi(\underline{\theta}_1 + \rho^* \underline{v})$
- (xiv) If $\Psi^{(2)} < \Psi^{(1)}$ continue on the step (xv). Else, set $\rho = \rho^{(1)}$ and go to the step (xx);
- (xv) Set $\rho = \rho^*$ and go to the step (xx);

Interpolation of p:

- (xvi) Set $\rho = \max\left[0.25\rho^{(1)}; \min(0.75\rho^{(1)}; \rho^*)\right];$
- (xvii) If $\rho \leq \rho_{min}$ go to the step (xx). Else, continue on the step (xviii);

(xviii) Compute $\Psi^{(2)} = \Phi(\underline{\theta}_1 + \rho \underline{v})$ and set J = J + 1;

(xix) If
$$\Psi^{(2)} < \Phi_1$$
 go to the step (xx). Else, set $\rho^{(1)} = \rho$

and
$$\rho^* = \frac{nP}{2(\gamma \rho^{(1)} + \Phi - \Psi^{(2)})}$$
, and return to the step (xvi):

(xx) Calculate $\underline{\theta}_2 = \underline{\theta}_1 + \rho \underline{v}$;

Termination:

and

(xxi) The criterion of termination is tested, using θ_1 and $\underline{\theta}_2$, as an example suggested by Marquardt (1963), is given according to the following equation.

$$\left| \boldsymbol{\theta}_{i+1,j} - \boldsymbol{\theta}_{i,j} \right| \leq \varepsilon_{j\dots} j = 1, 2, \dots, l$$

where $\varepsilon_{j} = 10^{-4} (\theta_{i,j} + 10^{-3}).$

If the criterion is satisfied for all parameters, iterations are terminated and $\underline{\theta}_2$ is accepted as the so-

lution $\underline{\theta}^*$. Otherwise, set $\lambda = 10\lambda$ and $\theta_1 = \theta_2$, and return to the step (ii).

C. Vapor-Liquid Equilibrium Data Regression

In order to demonstrate the applicability of the implemented Levenberg-Marquardt method, two programs for correlating vapor-liquid equilibrium data have been developed.

Antoine Constants Estimation

The first program allows data correlation of vapor pressure and temperature for pure components, using the Antoine equation. In Eq. (1) we have that P^{sat} is the vapor pressure, T is the saturation temperature, and A, B and C are the adjusted Antoine constants. This form of the Antoine equation is usual in the literature; however the user may, easily, apply a modified version of the correlation both in terms of the logarithm base and units.

$$\log_{10} P^{\text{sat}}(\text{mmHg}) = A - \frac{B}{T(^{\circ}\text{C}) + C}$$
(1)

To perform the data regression, the following objective function (OF) is to be minimized, which is the defined by the absolute residual in terms of vapor pressure.

$$OF = MIN = \sum (P_{exptl} - P_{calcd})^2$$
 (2)

The program requires initial guesses of A, B and C pa-

rameters to be estimated, name of the substance, number of data points and list of the experimental pairs of vapor pressure and saturation temperature. Indication of the units and the literature source from which the data has been retrieved is also requested. An output is provided where information about the iterations performed during the execution is registered, allowing the detection and identification of an eventual error. After convergence, the values of the estimated constants are displayed together with respective interval confidences, standard deviations and correlation matrix of the parameters. The program also provides the relative and absolute deviations in terms of vapor pressure and the estimation of the normal boiling point, at 760 mmHg, using the obtained correlation. Results for propyl acetate have been compared with Boublik et al. (1984) and validated the implemented program. The Antoine correlation for the propyl acetate has presented relative deviation (ΔP) of 0.04% and estimated the following parameters with corresponding confidence intervals: $A = 7.03008 \pm 0.03391$, $B = 1290.200 \pm 19.505$ and $C = 209.466 \pm 2.161$

Reduction and consistency test of vapor-liquid equilibrium data for binary systems

The second program developed is to accomplish the correlation of vapor-liquid equilibrium data for mixtures, using activity coefficient models presented in the literature (Prausnitz *et al.*, 1999), i.e. Margules 2-suffixes, Margules 3-suffixes, Van Laar, Wilson and NRTL (Non-Random Two Liquids). Therefore, data regression consists of the corresponding parameter estimation of the activity coefficient model. In the case that the VLE data set is complete, i.e. presents the values of temperature, total pressure, liquid and vapor compositions, the correlation tests also the thermodynamic consistency of the experimental data set. This is due to the fact that the activity coefficient models (γ_i) respect the exact thermodynamic definition of partial molar excess Gibbs energy.

$$\ln \gamma_i \equiv \left[\frac{\partial \left(n \, G^E / RT \right)}{\partial n_i} \right]_{T, P, n_{i,j}} = \frac{\overline{G}_i^E}{RT} \tag{3}$$

Thus, the Euler theorem may be applied, i.e. the additive property, together with the fundamental equation for G^{E} , resulting in the so-called Gibbs-Duhem relation, see Prausnitz et al. (1999). This is the base of the thermodynamic consistency test of an experimental phase equilibrium data set. We may find in the literature, in general, two tests for thermodynamic consistency of VLE data, i.e. area test and deviation test. In our case, we have applied the deviation test which is in fact a data correlation followed by the analysis of the deviations (see Fredenslund et al., 1977). We may describe, easily, the VLE data correlation of a binary system by writing the total pressure equation (Barker, 1953), and neglecting the nonidealities of the vapor phase, which is a reasonable simplification for low pressures and nonassociating components.

$$P_{\text{calcd}} = x_1 \gamma_1 P_1^{\text{sat}} + (1 - x_1) \gamma_2 P_2^{\text{sat}}$$
(4)

Table 1. Correlation and consistency test of the vapor-liquid
equilibrium data for the <i>n</i> -heptane(1) + ethyl butyrate(2) at

•	100 °C (Koj	ima and Too	higi, 1979).	•
Model	Α	В	ΔP (%)	Δy_I^{**}
Margules 2- suffixes	0.5563		1.36	0.0057
Margules 3- suffixes	0.7486	0.4059	0.87	0.0097
Van Laar	0.4664	0.5769	0.76	0.0096
Wilson	0.3928	1.1612	1.02	0.0089
NTRL*	1 2171	-0.4020	0.98	0.0091

* C is the random parameter and has been set to 0.3, as default value. ** The values of the absolute average deviation are lower than 0.01 ($\Delta y_1 < 0.01$), indicating that the data are considered to be consistent,

according to Fredenslund *et al.* (1977). It may be pointed out that the activity coefficients depend on the temperature, liquid mole fraction and their parameters, which are adjusted from phase equilibrium data reduction. To give an illustration, Eq. (5) shows the simple Margules 2-suffixes gamma model,

for both components.

$$\ln \gamma_1 = A x_2^2; \quad \ln \gamma_2 = A x_1^2 \tag{5}$$

Therefore, the data reduction for the mixture is similar to the Antoine correlation, and may also be represented by Eq. (2), which defines the objective function in terms of the pressure. For the mixture the differences are that the saturation pressure is replaced by the total pressure and the parameters come from the activity coefficient model instead of the Antoine equation. After the data regression, the vapor composition may be evaluated, according to Eq. (6).

$$_{1,\text{calcd}} = \frac{\gamma_1 x_1 P_1^{\text{sat}}}{x_1 \gamma_1 P_1^{\text{sat}} + (1 - x_1) \gamma_2 P_2^{\text{sat}}}$$
(6)

The vapor-liquid equilibrium data set for the nheptane(1) + ethyl butyrate(2) system at 100 °C presented by Kojima and Tochigi (1979) has been used to test the nonlinear regression method implemented. The developed program allows parameter estimation of the five activity coefficient models listed at Table 1. It may be observed that all models have fitted satisfactorily the experimental data. Furthermore, the deviations presented indicate that the experimental data is consistent. Concerning the operation of the program for correlating vapor-liquid equilibrium data of mixtures, it may be pointed out that all information relative to the system is given by the input file. The model is chosen during the execution of the program, together with the initial guess of the gamma coefficients and the Marquardt parameter. An output file is also created. Similar to the Antoine program, this output file contains information related to the iterations realized, during the execution of the Levenberg-Marquardt method.

After convergence, the values of the estimated parameters together with confidence intervals are presented together with the correlation matrix and standard deviations. Furthermore, the dependent variables are properly compared, and for the case of isothermic data, the percent average pressure deviation and the absolute average mole fraction of the vapor phase deviation are displayed, from which a thermodynamic consistence evaluation of the equilibrium data is prompt provided.

Vapor-liquid equilibrium correlation for mixtures with electrolytes

The Levenberg-Marquardt method was also applied for two aqueous ternary mixtures with methanol and NaCl and ethanol and NaCl with the second program. The corresponding binary systems have also been correlated. The UNIQUAC activity coefficient model (Abrams and Prausnitz, 1975) was applied in its original form and considering NaCl as one molecular species, i.e., neglecting the dissociation.

Table 2 reports structural parameters used for the studied species. It should be pointed out that structural parameters of the salt species, i.e., surface area and volume parameters were determined from the values of the water and a molar mass ratio. Two goals have been achieved using this approach. One was to provide data fitting capability with a reasonable order of magnitude of the structural parameters. Secondly, compatibility with the interaction parameters estimated for nonelectrolyte binary mixtures are encountered. This is also an important feature for predictability of the model and group contribution applications like UNIFAC (Kikic et al., 1991). Values of r and a for ionic species have been fitted by Macedo et al. (1990). Another approach encountered in the literature is the increment of the parameters from the ionic radii by considering solvation. However, the use of these two methods demands estimation of new solvent-solvent parameters and thereby compatibility requirement is not fulfilled. By the other hand, using the values of r and q calculated from the values of water and a ratio of the molar masses, as presented in Table 2, it was obtained the desired compatibility and simultaneously good correlation capability, eliminating the problem of low structural values due to the size of the ion for UNIQUAC equation.

Table 3 presents the estimated UNIQUAC interaction parameters for the species studied. It should be pointed out that the non-electrolyte binary systems have been correlated initial and separately and then with these predetermined values the salt-solvent constants were estimated from the corresponding experimental data. All calculations have presented absolute average deviation in terms of vapor mole fraction lower than 0.01 and relative average deviation in terms of pressure less than 2%. These deviations indicate the consistency of the experimental data and also the quality of the parameters that gather many experimental points and different sources.

Figures 1 and 2 illustrate the quality of the correlation obtained for the aqueous ternary systems with methanol and NaCl at 314.6 K and with ethanol and NaCl at 700 mmHg, respectively.

Table 2:	Structural	parameters for	UNIQU	JAC model.
Spaciac i	Mathanal	Ethonol	Watar	N ₀ C1

species	i Methanoi	Emanor	w ater	NaCI	
ri	1.4311	2.1055	0.9200	2.9845 ^a	
$q_{ m i}$	1.4320	1.9720	1.4000	4.5417 ^b	
,	$(\mathbf{u},\mathbf{u},\mathbf{v})$. h	(ne he		

$r_{\rm i} = r_{\rm water} (M_{\rm i} / M_{\rm water})$; $q_i = q_{water} (M_i / M_{water})$

Table 3: Estimated UNIQUAC interaction parameters (a_{ii}) in kelvin for the studied systems with methanol (MeOH), ethanol

(Et	tOH), water (H	l_2O) and sodi	um chloride	(NaCI)
i \ j	MeOH	EtOH	H_2O	NaCl
MeOH	0.00	432.85 ^a	-103.32 ^b	-932.37 ^d
EtOH	-261.57 ^a	0.00	-12.47 ^c	-878.07 ^d
H_2O	150.07 ^b	166.12 ^c	0.00	-925.33 ^d
NaCl	5817.00 ^d	4722.55 ^d	53.67 ^d	0.00
⁸ Doromotor	re actimated from	m mathanal a	thonal VIE d	ata (Niasan at

al., 1986; Kurihara et al., 1993).

th Parameters estimated from methanol+water VLE data (Soujanya *et. al.*, 2010; Yao *et. al.*, 1999; Kurihara *et al.*, 1993).
 ^{ch} Parameters estimated from ethanol+water VLE data (Pemberton and Mash, 1978; Niesen *et. al.*, 1986; Kurihara *et al.*, 1993, 1995; Arce *et.*

al., 1996; Navarro-Espinosa et al., 2010; Lai et al. 2014). ^dParameters estimated from water+NaCl, methanol+water+NaCl and

ethanol+water+NaCl VLE data (Clarke and Glew, 1985; Gmehling, 1997; Yang and Lee, 1998; Jödecke *et al.*, 2005), fixing MeOH+EtOH, MeOH+H₂O and EtOH+H₂O parameters determined previously^{a,b,c}

1. Vapor-liquid equilibrium diagrams for metha-Fig. nol(1)+water(2)+NaCl(3) at 314.6 K; solid symbols experimental (Jödecke et. al., 2005) and open symbols: UNIQUAC this work: \bullet and \bigcirc , $x'_1 = 0.0328$; \blacktriangle and \triangle , $x'_1 = 0.0789$; \blacksquare and \square , $x'_1 = 0.216$; \blacktriangledown and \bigtriangledown , $x'_1 = 0.466$.

Fig. 2. VLE y-x diagram for the system ethanol(1)+water (2)+NaCl(3) at 700 mmHg; 32 experimental points with salt mole fraction in the range of 0.001-0.1; ● experimental data (Gmehling, 1997); O calculated values with UNIQUAC (this work).

III. CONCLUSIONS

The coherence of the developed programs has been verified via comparison with the parameters estimated for the same data set, confirming the reliability of the Levenberg-Marquardt routines implemented.

The results of the correlation program for mixtures are also efficient and analysis of the deviations allows the evaluation of the thermodynamic consistence of the experimental data. This qualification of the data may be useful for their application, i.e. for the development of models, and design and operation of processes.

The developed tool of calculation may be applied in problems of simulation and optimization of processes, using inclusive the visual recourses, which facilitates the interaction with the users. Furthermore, new correlation programs may also be developed to describe other thermodynamic and physical-chemistry properties, since Levenberg-Marquardt has been properly implemented.

These new salt species structural parameters demonstrated also to be flexible for the data correlation and coherent to respect to order of magnitude. The electrostatic contribution has not been considered for VLE calculations. The original form of the UNIQUAC model demonstrated to be feasible with the molecular approach for strong electrolyte species in mixed solvents systems.

	NOMENCLATURE
a_{ij}	UNIQUAC interaction parameters
A, B, C	Antoine constants or activity coefficient pa- rameters
$\stackrel{A}{=}$	approximation of the Hessian matrix of the
	function Φ
calcd	calculated value
<u>e</u>	vector of the residuals
ei	residue of point <i>i</i> , $e_i = y_i - f_i(\underline{X}, \underline{\Theta})$
exptl	experimental value
$G^{\mathrm{E}}, \overline{G}_i^{E}$	molar excess Gibbs energy and partial mo-
	lar excess Gibbs energy of species i
Μ	number of experimental data points or
	atomic mass or molecular mass
$m_{\rm i}$	molality of species i
<i>n</i> , <i>n</i> _i	total number of moles and number of moles
	of species i
NRTL	Non Randon Two-Liquid
OF	objective function
Р	total pressure
<u>P</u>	any positive definite matrix
P_i^{sat}	vapor pressure of species i
\underline{q}	gradient of Φ or UNIQUAC surface area
	parameter
r, q	volume and surface area parameter
R	universal ideal gas constant
Т	temperature
VLE	Vapor-Liquid Equilibrium
$\underline{\underline{X}}$	matrix of the independent variables
x_i, y_i	mole fraction of the component <i>i</i> in the liq-

uid and vapor phase

- salt free mole fraction of the component *i* in X_i the liquid phase
 - vector of the dependent variables mole fraction of the component *i* in the vapor phase

Greek letters

у

ρ

λ

ν Φ

 Φ_1

ΔP	percent average deviation, defined as
	$100/M \sum_{i=1}^{M} \left(\left P_{\text{exptl},i} - P_{\text{calcd},i} \right / P_{\text{exptl},i} \right)$
Δy_1	absolute average deviation, defined as
	$1/M\sum_{i=1}^{M} \left y_{1,\text{exptl},i} - y_{1,\text{caled},i} \right $
3	a positive small number
Υı	activity coefficient of the component i
$\underline{\theta}$	vector of the parameters
$\underline{\Theta}_1$	vector of the parameters, initial guess

- vector of the parameters at iteration i $\underline{\theta}_i$
 - value of the step length

 - Marquadt parameter
 - vector in the direction of the proposed step
 - objective function objective function at the iteration 1
- $\Psi^{(\mathrm{l})}$
 - objective function at $\underline{\theta}_1 + \rho^{(1)} \underline{v}$

REFERENCES

- Abrams, D.S. and J.M. Prausnitz, "Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems," *AIChE J.*, **21**, 116-128 (1975). Arce, A., J. Martínez-Ageitos and A. Soto, "VLE for
- water + ethanol + 1-octanol mixtures. Experimental measurements and correlations," Fluid Phase Equil., 122, 117-129 (1996).
- Bard, Y., Nonlinear Parameter Estimation, Academic Press, New York (1974).
- Barker, J.A., "Determination of Activity Coefficients from Pressure Total Measurements," Austral. J. Chem., 6, 207-210 (1953).
- Boublik, T., V. Fried and E. Hála, The Vapor Pressure of Pure Substances, Elsevier, Amsterdam (1984).
- Camacho-Camacho, L.E., L.A. Galicia-Luna, O. Elizalde-Solis and Z. Martinez-Ramirez, "New isothermal vapor-liquid equilibria for the CO2 + nnonane, and CO2 + n-undecane systems," Fluid Phase Equilibria, 259, 45–50 (2007).
- Clarke, E.C. and D.N. Glew, "Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C," J. Phys. Chem. Ref. Data, 14, 2, 489-610 (1985).
- Fox, L., An Introduction to Numerical Linear Algebra, Oxford Univ. Press (Clarendon), London and New

York (1964).

- Fredenslund, A., J. Gmehling and P. Rasmussen, Vapor-Liquid Equilibria Using UNIFAC, Elsevier, Amsterdan (1977).
- Gmehling, J., Dortmund Data Bank (DDB) electrolytes (ELE). Oldenburg, Germany: DDBST GmbH (1997).
- Haghtalab, A. and K. Peyvandi, "Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions," *Fluid Phase Equilibria*, 281, 163–171 (2009).
- Jödecke, M., A.P.S. Kamps and G. Maurer, "Experimental Investigation of the Influence of NaCl on the Vapor-Liquid Equilibrium of CH3OH + H2O," *J. Chem. Eng. Data*, **50**, 138-141 (2005).
- Kikic, I., M. Fermeglia and P. Rasmussen, "UNIFAC Prediction of Vapor-Liquid Equilibria in Mixed Solvent-Salt Systems," *Chemical Eng. Science*, 46, 2775-2780 (1991).
- Kojima, K. and K. Tochigi, Prediction of Vapor-Liquid Equilibria by the ASOG, Elsevier, Amsterdam (1979).
- Kurihara, K. M. Nakamichi and K. Kojima, "Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems," J. Chem. Eng. Data, 38, 446-449 (1993).
- Kurihara, K., T. Minoura, K. Takeda and K. Kojima, "Isothermal Vapor-Liquid Equilibria for Methanol + Ethanol+Water, Methanol+Water, and Ethanol + Water," J. Chem. Eng. Data, 40, 679-684 (1995).
- Lai, H.S., Y. Lin and C.-H. Tu, "Isobaric (vapor + liquid) equilibria for the ternary system of (ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa," J. Chem. Thermod., 68, 13-19 (2014).
- Lazzús, J.A., "Optimization of activity coefficient models to describe vapor-liquid equilibrium of (alcohol + water) mixtures using a particle swarm algorithm," *Comp. and Mathem. with Applicat.*, **60**, 2260–2269 (2010).
- Levenberg, K., "A method for the solution of certain nonlinear problems in least squares," *Quart. Appl. Math.*, 2, 164-168 (1944).
- Loehe, J.R. and M.D. Donohue, "Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems," *AIChE J.*, 43, 1, 180– 195 (1997).
- Macedo, E.A., P. Skovborg and P. Rasmussen, "Calculation of phase equilibria for solutions of strong eletrolytes in solvent-water mixtures," *Chem. Eng. Sci.*, **45**, 875-882 (1990).
- Maquardt, D.W., "An algorithm for least squares estimation of nonlinear parameters," *SIAM J.*, **11**, 431-441 (1963).
- Navarro-Espinosa, I.R., C.A. Cardona and J.A. López, "Experimental measurements of vapor–liquid equilibria at low pressure: Systems containing alcohols, esters and organic acids," *Fluid Phase Equil.*, 287, 141-145 (2010).

- Niesen, V., A. Palavra, A.J. Kidnay and V.F. Yesavage, "An apparatus for vapor-liquid equilibrium at elevated temperatures and pressures and selected results for the water-ethanol and methanol-ethanol systems," *Fluid Phase Equil.*, **31**, 283-298 (1986).
- Pemberton, R.C. and C.J. Mash, "Thermodynamic properties of aqueous non-electrolyte mixtures II. Vapour pressures and excess Gibbs energies for water + ethanol at 303.15 to 363.15 K determined by an accurate static method," J. Chem. Thermodynamics, 10, 867-888 (1978).
- Prausnitz, J.M., R.N. Lichtenthaler and E.G. Azevêdo, Molecular Thermodynamics of Fluid Phase Equilibria, Prentice-Hall (1999).
- Soujanya, J., B. Satyavathi and T.E. Vittal Prasad, "Experimental (vapour + liquid) equilibrium data of (methanol + water + glycerol) and (methanol + glycerol) systems at atmospheric and sub-atmospheric pressures," J. Chem. Thermod., 42, 621-624 (2010).
- Thomsen, K., M.C. Iliuta and P. Rasmussen, "Extended UNIQUAC model for correlation and prediction of vapor–liquid–liquid–solid equilibria in aqueous salt systems containing non-electrolytes. Part B. Alcohol (ethanol, propanols, butanols)–water–salt systems," *Chem. Eng. Sci.*, **59**, 3631–3647 (2004).
- Yang, S. and C.S. Lee, "Vapor-Liquid Equilibria of Water + Methanol in the Presence of Mixed Salts," J. Chem. Eng. Data, 43, 558-561 (1998).
- Yao, J., H. Li and S. Han, "Vapor–liquid equilibrium data for methanol–water–NaCl at 45°C," *Fluid Phase Equil.*, 162, 253-260 (1999).

APÊNDICE B – Requisitos para Executar os Programas Desenvolvidos

Os programas desenvolvidos podem ser executados nos principais sistemas operacionais: Windows[®] (windows.microsoft.com), Ubuntu[®] (ubuntu.com) e, também, em Mac OS X[®] (apple.com). As seções seguintes apresentam os requisitos necessários em cada sistema operacional juntamente com um exemplo.

B.1 Requisitos Gerais

Os requisitos gerais para a execução dos programas desenvolvidos são:

- a) Python versão 2.7 (<https://www.python.org/>);
- b) NumPy (<http://www.numpy.org/>);
- c) SciPy (<http://scipy.org/>);
- d) *Matplotlib* (<http://matplotlib.org/>);
- e) Qt e PySide (<http://qt-project.org/>).

B.2 Requisitos para o Ubuntu[®]

B.2.1 Instalação e configuração

Todos os itens dos requisitos gerais (seção B.1) e específicos são instalados e configurados mediante os comandos, executados em linha de comando, a seguir:

- a) sudo apt-get install python-numpy python-scipy;
- b) sudo apt-get install python-matplotlib python-pyside.

B.2.2 Compilação e execução

Antes de executar o programa é necessário compilar o arquivo Form.ui para gerar o arquivo ui_Form.py e compilar o arquivo Form.qrc para gerar o arquivo Form_rc.py. Isto é feito em linha de comando, no diretório principal de cada programa, por meio dos comandos:

- a) python-uic Form.ui -o ui_Form.py (para ambos os programas);
- b) python-rcc Form.qrc -o Form_rc.py (apenas para o programa JAFOSSMS).

Depois destas etapas os programas podem ser executados, também, em linha de comando, por meio dos comandos:

- a) python VLEregression.py (para o programa VLE Regression);
- b) python JAFOSSMS.py (para o programa JAFOSSMS).

B.2.3 Exemplo

No *Ubuntu*[®] 14.04 *LTS* (32bits), foram instalados e configurados os requisitos citados na seção B.1 e, também, os citados na seção B.2. Após a compilação dos arquivos Form.ui e Form.qrc (apenas para o programa *JAFOSSMS*), os programas foram executados, o que é ilustrado na Figura 61(a) e na Figura 61(b), a seguir:

Figura 61 – Programas VLE Regression e JAFOSSMS no Ubuntu[®] 14.04 LTS.

(a) Programa VLE Regression.

Fonte: O autor.

B.3 Requisitos para o Windows[®]

B.3.1 Instalação e configuração dos requisitos

Primeiramente, deve-se instalar todos os itens dos requisitos gerais (seção B.1), cujos executáveis podem ser encontrados nos respectivos portais. Após isso, é necessário, a instalação das seguintes bibliotecas Python, todas encontradas em <<u>http://www.lfd.uci.edu/~gohlke/pythonlibs/></u>:

- a) setuptools;
- b) six;
- c) *python-dateutil*;
- d) pyparsing.

Em seguida, para facilitar a execução dos programas, adicione a variável de ambiente Path, os caminhos:

- a) C:\Python27 $\;$
- b) C:Python 27 Scripts;
- c) C:\Python27\Libsite-packagesPySide.

B.3.2 Compilação e execução

Antes de executar o programa é necessário compilar o arquivo Form.ui para gerar o arquivo ui_Form.py e compilar o arquivo Form.qrc para gerar o arquivo Form_rc.py. Isto é feito em linha de comando, no diretório principal de cada programa, por meio dos comandos:

- a) python-uic Form.ui -o ui_Form.py (para ambos os programas);
- b) python-rcc Form.qrc -o Form_rc.py (apenas para o programa JAFOSSMS).

Depois destas etapas os programas podem ser executados, também, em linha de comando, por meio dos comandos:

- a) python VLEregression.py (para o programa VLE Regression);
- b) python JAFOSSMS.py (para o programa *JAFOSSMS*).

B.3.3 Exemplo

No *Windows*[®] 7 *Home Basic* (32bits), foram instalados e configurados os requisitos citados na seção B.1, ou seja, instalou-se, na ordem:

- a) python-2.7.8.msi;
- b) numpy-1.9.0-win32-superpack-python2.7.exe;
- c) scipy-0.14.0-win32-superpack-python2.7.exe;
- d) matplotlib-1.4.0.win32-py2.7.exe;
- e) qt-opensource-windows-x86-mingw482_opengpodeml-5.3.1.exe;
- f) PySide=1.2.2.win32-py2.7.exe.

Em seguida foram instalados ou requisitos citados na seção B.3, ou seja, instalou-se, na ordem:

- a) setuptools-3.8.1.win32-py2.7.exe;
- b) six-1.7.3.win32-py2.7.exe;
- c) python-dateutil-2.2.win32-py2.7.exe;
- d) pyparsing-2.0.2.win32-py2.7.exe.

Após a configuração da variável de ambiente Path e a compilação dos arquivos Form.ui e Form.qrc (apenas para o programa *JAFOSSMS*), os programas foram executados, o que é ilustrado na Figura 62(a) e na Figura 62(b), a seguir:

Figura 62 – Programas VLE Regression
eJAFOSSMSno Windows $^{\circledast}$ 7 Home Basic.

(a) Programa VLE Regression.

Fonte: O autor.

(b) Programa JAFOSSMS.

B.4 Requisitos para o Mac OS X[®]

B.4.1 Instalação e configuração

Todos os itens dos requisitos gerais (seção B.1) e específicos são instalados e configurados mediante os instaladores encontrados nos respectivos portais. Podendo, ser utilizados, alternativamente aos arquivos .dmg e .pkg, os instaladores brew, easy_install e pip.

B.4.2 Compilação e execução

Antes de executar o programa é necessário compilar o arquivo Form.ui para gerar o arquivo ui_Form.py e compilar o arquivo Form.qrc para gerar o arquivo Form_rc.py. Isto é feito em linha de comando, no diretório principal de cada programa, por meio dos comandos:

- a) python-uic Form.ui -o ui_Form.py (para ambos os programas);
- b) python-rcc Form.qrc -o Form_rc.py (apenas para o programa JAFOSSMS).

Depois destas etapas os programas podem ser executados, também, em linha de comando, por meio dos comandos:

- a) python VLEregression.py (para o programa VLE Regression);
- b) python JAFOSSMS.py (para o programa *JAFOSSMS*).

B.4.3 Exemplo

No *Mac OS X[®] 10.6 Snow Leopard* (32bits), foram instalados e configurados os requisitos citados na seção B.1 e, também, os citados na seção B.4, ou seja, instalou-se, na ordem:

- a) python-2.7.8-macosx10.6.dmg;
- b) scipy-0.14.0-py2.7-python.org-macosx10.6.dmg;
- c) numpy-1.8.0-py2.7-python.org-macosx10.6.dmg;
- d) matplotlib-1.3.1-py2.7-python.org-macosx10.6.dmg;
- e) qt-opensource-mac-4.8.6-1.dmg;
- $f) \ {\tt pyside-1.1.1-qt48-py27apple.pkg}.$

Após a compilação dos arquivos Form.ui e Form.qrc (apenas para o programa *JAFOSSMS*), os programas foram executados, o que é ilustrado na Figura 63(a) e na Figura 63(b), a seguir:

Figura 63 – Programas VLE Regression e JAFOSSMS no Mac $OS\ X^{\circledast}$ 10.6 Snow Leopard.

Datafile: /Users/jafobr/Downloads/Python/UN	IQUAC/src/Data/2/Methanol-Wat	er.dat (Browse
Use Fixed Alj			
Use only experimental data in the temperatu	re range ("C): Minimum =	Maximum =	
betafile: //wea/jable/boolook/tythos/00306/wor/beta/l/m	ethane)-Water.det		0
Vil Systems (Liferitated, + (1)Meter			
Petersene of data: 14 Kinary Vel Spream (1, 34) if a - 4 curs of T range 14 Kinary Vel Spream (1, 31) N - 4 curs of T range 14 Kinary Vel Spream (1, 31) N - 4 curs of T range	 34 points == 'Murihars at al., J. that 31 points => 'Durihars at., J. Com, 31 points == 'Murihars' at., J. Com, 	. 800. 884a 1993, 10. 444° Des. Ceta 1993, 40. 478° Phase Sphilipris 1991, 127, 141° 17	- 917 1989
ALL NAME VIE STORE (2, 1) IL . I DOT OF TORE IN RAME VIE STORE (2, 1) IL . I DOT OF TORE IN RAME VIE STORE (2, 1) IL . I DOT OF TORE	 11 points or "Par et. al., Finid them - 44 points or "Incharge et. Al., J. Con- - 5 points or "Summin-Supercons et al.) 	Populitatia 1999, 162, 1937 - Desendenzias 2021, 42, 427 Field Phase Spillatia 1918, 197, 1	41° (11 MT
Aij = (b statu(i))			
And a factor and a			
- COMMENSION both actual and predicted relative reductions in Arts of Nach 1.000000	the sun of squares		
Relation: Ai = (1 5.00 -100.33 1 1 150.00 0.00 10			
Non-himsed beaut Squares Businery Statistics			
Putchine: y = 190205			
Description DF Date of Datasets Basic Dependent Approximation 3 10000000, 200000 10000000, 200000 10000000, 200000 Menorymetrical Potesia 141 3000000, 200000 10000000, 200000 10000000, 200000 Menorymetrical Potesia 140 3000000, 200000 10000000, 200000 10000000, 200000 Description 500000, 200000 10000000, 200000 10000000, 200000 10000000, 200000	g Sittizione Millio		
alpha = 0.00000			
a = 7.829124			
Jacuartes Intineire Arrayistic trailer	PriP(A)) Approximate Not		4
			(10)
(mg)			ENC

(a) Programa VLE Regression.

Fonte: O autor.

	RELATÓRIO GERA	L SOLVENTE SIMPLES	MISTURA DE SOL	VENTES	RÁFICO	E ESTATI	STICAS		
					10107			1010	
									i ni
	· · · · · · · · · · · · · · · · · · ·								
		-							
10									
		1							
la la									
\$ 0.8	/	- · ·			1,1000			1,55	
		199 15 V (Basements)		- 1 I I I	1.124		1.580		
- 00	L	105.15 K (Reproduct)							
5 d.0	1	222.15 K (Regression)			1,7581		1,084		l m
2		 Nodelo M/OSSMS 							
0, 0,4	· · · · · · · · · · · · · · · · · · ·	······································	n (1992)	and a second					
2.2		순 순 ibbin e fobe (2145)							
3. 03	<i>.</i>	C Kraus, Raridos e Baldwin (1660						
	-	O Unite (2008)							
		A Linke e Seidell (1965)		\					
0,0	6				1.000			1.14	
		7 V. Winble (1931)		•	1,000	1,000	5.000		
	0.0 0.2	0.4 0.6	0.8	1.0					
									U.
		X MEG							
									1
									I XI
					1,1041	1,041		1,14	
Barra de Na	rvegação	Marcas r	ios Eixos: ———	11					
			-						
Lependa: 4	8	Sector Sector		0	Gra	rvar Estar	isticas) 🔴 🗕	= 6
		Portuge -							
	an de Casada, Casada								
Annukan com Dada		//moor/powingens/jaros	owney ward/ 0414500	June 10					
Arquivo com Dadi									

(b) Programa JAFOSSMS.

APÊNDICE C – Programa VLE Regression

Neste apêndice, primeiramente, apresenta-se os códigos da interface gráfica do usuário (GUI), da biblioteca de modelos termodinâmicos e do programa principal. E, por último, explica-se a formatação do arquivo com dados de entrada. Todos estes itens, juntos, constituem o programa *VLE Regression*.

Os códigos apresentados aqui permitem recriar, a partir do conteúdo impresso, o arquivo original. Para que isso seja possível, é necessário que o texto impresso (incluindo os espaços à esquerda, na exata quantidade) seja gravado na forma de arquivo de texto sem formatação, com os respectivos nomes (exceto os de dados de entrada, onde, apenas, sugere-se que tenham a extensão .dat) e, OBRIGATORIAMENTE, com codificação UTF-8.

r	Form.ui
1	xml version="1.0" encoding="UTF-8"?
2	<pre><ui version="4.0"></ui></pre>
3	<class>Form</class>
4	<widget class="QWidget" name="Form"></widget>
5	<property name="geometry"></property>
6	<rect></rect>
7	<x>0</x>
8	<y>0</y>
9	<width>800</width>
10	<height>600</height>
11	
12	
13	<property name="windowTitle"></property>
14	<string>VLE Regression</string>
15	
16	<layout class="QVBoxLayout" name="verticalLayout"></layout>
17	<item></item>
18	<widget class="QLabel" name="label_Description"></widget>
19	<property name="text"></property>
20	<string>Regression of VLE data to calculate binary parameters (Aij) of the UNIQUAC model</string>
21	
22	
23	
24	
25	<item></item>
26	<layout class="QHBoxLayout" name="horizontalLayout_1"></layout>
27	<item></item>
28	<widget class="QLabel" name="label_Datafile"></widget>
29	<property name="text"></property>
30	<string>Datafile:</string>
31	
32	<property name="buddy"></property>
33	<cstring>lineEdit_Datafile</cstring>

C.1 Interface Gráfica do Usuário

34	
35	
36	
37	<item></item>
38	<widget class="QLineEdit" name="lineEdit_Datafile"></widget>
39	
40	<item></item>
41	<widget class="QPushButton" name="pushButton_Browse"></widget>
42	<property name="text"></property>
43	<string>%amp;Browse</string>
44	
40	
40	11cm
41	
40	
49 50	<pre></pre>
51	<pre>(itayout class= windoxLayout name= noil2ontaiLayout_2 / (itam)</pre>
52	<pre><uident class="0" hackbox"="" name="chackBox Fixed/ii"></uident></pre>
53	(widget Class- Woherhox hame- checkbox_fixedai) >
54	<pre><string>IIse &amp.Fixed Aii</string></pre>
55	
56	
57	
58	<pre><item></item></pre>
59	<pre><widget class="OLineEdit" name="lineEdit FixedAij"></widget></pre>
60	<property name="enabled"></property>
61	<pre><bool>false</bool></pre>
62	
63	
64	
65	
66	
67	<item></item>
68	<layout class="QHBoxLayout" name="horizontalLayout_3"></layout>
69	<item></item>
70	<widget class="QCheckBox" name="checkBox_TRange"></widget>
71	<property name="text"></property>
72	<string>&Use only experimental data in the temperature range (°C):</string>
73	
74	
75	
76	<item></item>
77	<widget class="QLabel" name="label_TMin"></widget>
78	<property name="enabled"></property>
79	<pre><bool>false</bool></pre>
80	
81	<property name="text"></property>
82	<string>Mi&nimum =</string>
83	
84	<property name="buddy"> fortuine>lineEliteTWinf(ortuine>)</property>
00 86	<pre>>cstring>inetait_imin </pre>
87	<pre>/vidget></pre>
88	<pre>>/ #IUget/ </pre>
80	\/_100M/ <itam></itam>
90	<pre><widget class="QLineEdit" name="lineEdit TMin"></widget></pre>
91	<pre>sproperty name="enabled"></pre>
92	<pre><bool>false</bool></pre> /bool>
93	

94	
95	
96	<item></item>
97	<widget class="QLabel" name="label_TMax"></widget>
98	<property name="enabled"></property>
99	 <bool>false</bool>
100	
101	<property name="text"></property>
102	<string>Ma&ximum =</string>
103	
104	<property name="buddy"></property>
105	<cstring>lineEdit_TMax</cstring>
106	
107	
108	
109	<item></item>
110	<widget class="QLineEdit" name="lineEdit_TMax"></widget>
111	<property name="enabled"></property>
112	<bool>false</bool>
113	
114	
115	
110	
117	
110	<pre>\Ltem/ </pre>
120	
120	<pre>() 100m/ (itam)</pre>
121	<pre><low class="OHBoxLavout" name="horizontalLavout 4"></low></pre>
123	<pre><iup></iup></pre>
124	<widget class="QPushButton" name="pushButton Run"></widget>
125	<pre><pre>content of the second secon</pre></pre>
126	<pre><string>&Run</string></pre>
127	
128	
129	
130	<item></item>
131	<spacer name="horizontalSpacer"/>
132	<property name="orientation"></property>
133	<enum>Qt::Horizontal</enum>
134	
135	<property name="sizeHint" stdset="0"></property>
136	<size></size>
137	<width>40</width>
138	<height>20</height>
139	
140	
141	space /</td
142	
144	<pre><widget class="QPushButton" name="pushButton Evit"></widget></pre>
145	<pre><pre><pre><pre>corectv name="text"></pre></pre></pre></pre>
146	<pre><string>&Exit</string></pre>
147	
148	
149	
150	
151	
152	
153	

154	<tabstops></tabstops>
155	<tabstop>lineEdit_Datafile</tabstop>
156	<tabstop>pushButton_Browse</tabstop>
157	<tabstop>checkBox_FixedAij</tabstop>
158	<tabstop>lineEdit_FixedAij</tabstop>
159	<tabstop>checkBox_TRange</tabstop>
160	<tabstop>lineEdit_TMin</tabstop>
161	<tabstop>lineEdit_TMax</tabstop>
162	<tabstop>textEdit</tabstop>
163	<tabstop>pushButton_Run</tabstop>
164	<tabstop>pushButton_Exit</tabstop>
165	
166	<resources></resources>
167	<connections></connections>
168	

C.2 Código Fonte da Biblioteca de Modelos Termodinâmicos

_ ThermodynamicModels.py

```
1
    def UNIQUAC(r,q,a,x,T):
\mathbf{2}
       from numpy import inner,outer,log,exp,array
3
        J = outer(1./inner(r,x),r)
4
       L = outer(1./inner(q,x),q)
5
       lnGammaC = 1-J+log(J)-5*q*(1-J/L+log(J/L))
6
       tau = exp(outer(-1./T,a).reshape(T.shape+a.shape))
7
        s = array([inner(xL_i,tau_i.T) for xL_i,tau_i in zip(x*L,tau)])
8
        lnGammaR = q*(1-log(s)-array([inner(xLs_i,tau_i) for xLs_i,tau_i in zip(x*L/s,tau])))
9
        return exp(lnGammaC+lnGammaR)
```

C.3 Código Fonte do Programa Principal

VLEregression.py

```
#!/usr/bin/env python
 1
    # -*- coding: utf8 -*-
 2
3
    from __future__ import division
 4
    from PySide.QtGui import QApplication, QDialog, QFileDialog
    from PySide.QtCore import QFile, QTextStream
5
6
    import sys
7
    from numpy import *
8
    import matplotlib.pyplot as plt
9
10
    import ui_Form
11
    import ThermodynamicModels
12
    from numpy.f2py.auxfuncs import isarray
13
    class Form(QDialog, ui_Form.Ui_Form):
14
15
16
        def __init__(self):
17
             super(Form, self).__init__()
             self.setupUi(self)
18
19
             self.textEdit.setStyleSheet('font: 8pt \"Courier\";')
20
             self.checkBox_FixedAij.stateChanged.connect(self.toggleCheckBox_FixedAij)
21
             self.checkBox_TRange.stateChanged.connect(self.toggleCheckBox_TRange)
22
             self.pushButton_Browse.clicked.connect(self.browse)
```

```
23
             self.pushButton_Run.clicked.connect(self.runCalculations)
24
             self.pushButton_Exit.clicked.connect(self.exitProgram)
25
             self.show()
26
27
        def toggleCheckBox_FixedAij(self):
28
             flag = self.checkBox_FixedAij.isChecked()
29
             self.lineEdit_FixedAij.setEnabled(flag)
30
31
        def toggleCheckBox_TRange(self):
32
             flag = self.checkBox_TRange.isChecked()
33
             self.label_TMin.setEnabled(flag)
34
             self.label_TMax.setEnabled(flag)
35
             self.lineEdit_TMin.setEnabled(flag)
36
             self.lineEdit_TMax.setEnabled(flag)
37
38
        def browse(self):
39
             self.textEdit.clear()
40
             fName, _ = QFileDialog.getOpenFileName(self, 'Filename of the dataset', '.',
41
                 'Dataset (*.dat);;All files (*.*)')
42
             if fName:
43
                 self.lineEdit_Datafile.setText(fName)
44
             return
45
46
         def runCalculations(self):
47
             fName =self.lineEdit_Datafile.text()
48
             if fName.strip() == '':
49
                 return
50
             if not QFile(fName).exists:
51
                 return
52
             self.nl_regression(fName)
53
54
        def exitProgram(self):
             self.close()
55
56
57
         def printText(self, text):
58
             self.textEdit.insertPlainText(text.decode('utf-8'))
59
60
         def nl_regression(self,fName):
61
             import scipy.stats as stats
62
             import scipy.optimize as optimize
63
             self.textEdit.clear()
64
             def readData(stream):
65
                 return stream.readLine().split('#')[0].split()
66
             f=QFile(fName)
67
             f.open(QFile.ReadOnly | QFile.Truncate | QFile.Text)
68
             stream = QTextStream(f)
69
             self.printText('Datafile: {}\n\n'.format(fName))
70
             Comp = readData(stream)
71
             NComp = len(Comp)
72
             self.printText('VLE System: ')
73
             for i in range(NComp-1):
74
                 self.printText('({}){} + '.format(i+1, Comp[i]))
             self.printText('({}){}\n\n'.format(NComp, Comp[-1]))
75
76
             EqAntoine, r, q = [], [], []
77
             for i in range(NComp):
78
                 EqAntoine_i = []
79
                 NEqs = int(readData(stream)[0])
80
                 if NEqs == 0:
81
                     EqAntoine.append(0.)
82
                 else:
```

83	for j in range(NEqs): EqAntoine_i.append(map(float, readData(stream)))
84	EqAntoine.append(EqAntoine_i)
85	for eq in EqAntoine:
86	if eq != 0.:
87	if len(eq)>1:
88	TO = None
89	<pre>for i in range(len(eq)-1):</pre>
90	T1, T2, T3, T4 = eq[i][-2], eq[i][-1], eq[i+1][-2], eq[i+1][-1]
91	if i>0:
92	eq[i-1][-1] = T0
93	T0 = (T2*(T4-T3)+T3*(T2-T1))/((T4-T3)+(T2-T1))
94	eq[-2][-1] = T0
95	eg[-1][-2] = T0
96	for i in range(NComp):
97	line = map(float.readData(stream))
98	r append(line[0]); g append(line[1])
99	$r_{\alpha} = \operatorname{array}(r) \operatorname{array}(\alpha)$
100	$\mathbf{x} \mathbf{y} \mathbf{F} \mathbf{x} \mathbf{x} \mathbf{F} \mathbf{x} \mathbf{x} \mathbf{F} \mathbf{x} \mathbf{x} $
101	for i in range (NComp):
101	v appand([])
102	x.append([])
103	y.append([])
104	ND-f D-f 1 []
100	NREI, REIS = 1, []
100	while not stream.attha():
107	notuse = int(readData(stream)[0])
108	ref = stream.readLine().split('#')[0].strip()
109	Sysurder = map(lambda x: lnt(x)-1, readData(stream))
110	NPoints = SysUrder.pop()+1
111	SysType = Ien(SysUrder)
112	NUutUfRange = 0
113	<pre>for _ in range(NPoints):</pre>
114	<pre>line = map(float,readData(stream))</pre>
115	if notUse:
116	continue
117	<pre>if self.checkBox_TRange.isChecked():</pre>
118	<pre>if line[-1] < float(self.lineEdit_TMin.text()) or line[-1] > float(</pre>
119	<pre>self.lineEdit_TMax.text()):</pre>
120	NOutOfRange += 1
121	continue
122	for i in range(SysType-1):
123	<pre>x[SysOrder[i]].append(line[i])</pre>
124	<pre>y[SysOrder[i]].append(line[i+SysType-1])</pre>
125	<pre>x[SysOrder[SysType-1]].append(1sum(line[0:SysType-1]))</pre>
126	y[SysOrder[SysType-1]].append(1sum(line[SysType-1:2*SysType-2]))
127	<pre>for i in set(range(NComp))-set(SysOrder):</pre>
128	x[i].append(0.)
129	y[i].append(0.)
130	<pre>PExp.append(line[-2])</pre>
131	<pre>TExp.append(line[-1])</pre>
132	Refs.append(NRef)
133	if notUse:
134	<pre>txtNoUsed = ' (>> NOT USED <<)'</pre>
135	else:
136	<pre>txtNoUsed =''</pre>
137	if SysType < 1:
138	<pre>self.printText('\n=> ERROR: SysType < 2')</pre>
139	elif SysType == 2:
140	<pre>self.printText('{:<35}'.format('({}) Binary VLE System {}:'.format(NRef,</pre>
141	<pre>tuple(array(SysOrder)+1))))</pre>
142	elif SysType == 3:

```
143
                      self.printText('{:<35}'.format('({}) Ternary VLE System {}:'.format(NRef,</pre>
144
                          tuple(array(SysOrder)+1)))
145
                  elif SysType == 4:
                      self.printText('{:<35}'.format('({}) Quaternary VLE System {}:'.format(NRef,</pre>
146
147
                          tuple(array(SysOrder)+1))))
148
                  elif SysType > 4:
149
                      self.printText('{:<35}'.format('({}) {}-nary VLE System {}:'.format(SysType,</pre>
150
                          tuple(NRef,array(SysOrder)+1))))
151
                  self.printText('{:4g} - {:4g} (out of T range) = {:4g} points => {}{\n'.format(
152
                      NPoints, NOutOfRange, NPoints-NOutOfRange, ref, txtNoUsed))
153
                  NRef += 1
154
              f.close()
155
              x, y = array(x).T, array(y).T
156
              PExp, TExp, NRef = array(PExp), array(TExp), array(NRef)
157
              PSat = []
              for T in TExp:
158
159
                  PSat_i = []
160
                  for i in range(NComp):
161
                      if type(EqAntoine[i])==float: PSat_i.append(0.)
162
                      else:
163
                          eqUsed = False
164
                          for eq in EqAntoine[i]:
165
                              A, B, C, T1, T2 = eq
166
                              if T1<=T<T2:
167
                                   PSat_i.append(10**(A-B/(C+T)))
168
                                   eqUsed = True; break
169
                          if eqUsed: continue
170
                          self.printText('\n=> ERROR: Impossible to calculate PSat')
171
                          self.printText(' without Antoine Equation ({}) for T = {} °C.' \
172
                               .format(Comp[i], T))
173
                          return
                  PSat.append(PSat_i)
174
175
              PSat = array(PSat)
176
              TExp += 273.15 # °C => K
177
              theta_fixed_i, theta_fixed = [], []
178
              def f_LCtoI(1,c,n):
179
                  a = 1*n+c
180
                  return a-a//(n+1)-1
181
              def f_ItoLC(i,n):
182
                  l = i/(n-1); c = i(n-1)
                  if c>=1:
183
                      c+=1
184
185
                  return 1. c
186
              if self.checkBox_FixedAij.isChecked():
187
                  for value in self.lineEdit_FixedAij.text().split(','):
188
                      lin, col, num = map(eval, value.split())
189
                      theta_fixed_i.append(f_LCtoI(lin-1, col-1, NComp))
190
                      theta_fixed.append(num)
191
              theta_i = sorted(set(range(NComp*(NComp-1)))-set(theta_fixed_i))
192
              def f(X, *theta):
193
                  for i, num in zip(theta_i, theta): a[f_ItoLC(i, NComp)] = num
194
                  gamma = ThermodynamicModels.UNIQUAC(r, q, a, X, TExp)
195
                  return array(map(sum, X*gamma*PSat))
196
              def plus_minus(a,b):
197
                  return a-b, a+b
198
              theta0 = (random.rand(NComp*(NComp-1)-len(theta_fixed))*2000-1000.).astype(int).astype(
199
                  float)
200
              N, P = x.shape[0], theta0.shape[0]
201
              a = zeros((NComp, NComp))
202
              for i, num in zip(theta_fixed_i, theta_fixed):
```

```
203
                  a[f_ItoLC(i,NComp)] = num
204
              self.printText('\nAij = [[')
205
              idx = 0
206
              for i in range(NComp):
207
                  for j in range(NComp):
208
                      if i == j: self.printText('{:^10}'.format(0))
209
                       else:
210
                           k = f_LCtoI(i,j,NComp)
211
                           if k in theta_fixed_i:
212
                               self.printText('{:^10}'.format('{:7.2f}'.format(theta_fixed[
213
                                   theta_fixed_i.index(k)])))
214
                           else:
215
                               self.printText('{:^10}'.format('theta[{}]'.format(idx)))
216
                               idx += 1
217
                  if i < NComp-1:
                      self.printText(']\n
218
                                                  [')
              self.printText(']]\n\nInitial Guess:\nAij = [[')
219
220
              1 = 0
221
              for i in range(NComp):
222
                  for j in range(NComp):
223
                      if i == j: self.printText('{:^10}'.format(0))
224
                      else:
225
                          k = f_LCtoI(i, j, NComp)
226
                           if k in theta_fixed_i:
227
                               self.printText('{:^10}'.format('{:7.2f}'.format(theta_fixed[
228
                                   theta_fixed_i.index(k)])))
229
                           else:
230
                               self.printText('{:^10}'.format('{:7.2f}'.format(theta0[1])))
231
                               1 += 1
232
                  if i < NComp-1:
                      self.printText(']\n
233
                                                  [')
234
              self.printText(']]\n')
235
              try:
236
                  theta_optimum, cov_theta_optimum, _, errmsg, _ = optimize.curve_fit(f, x, PExp, theta0,
237
                      full_output=1)
238
              except:
239
                  self.printText('\n=> NOT CONVERGED: {}\n'.format(sys.exc_info()[0]))
                  self.printText('\n=> TRY RUNNING AGAIN OR ADD/REMOVE ELV SYSTEMS !!!')
240
241
                  return
242
              self.printText('\n=> CONVERGED: {}\n\nSolution:\nAij = [['.format(errmsg))
243
              for i in range(NComp):
244
                  for j in range(NComp):
245
                      self.printText('{:^10}'.format('{:7.2f}'.format(a[i,j])))
246
                  if i < NComp-1:
247
                      self.printText(']\n
                                                  [')
248
              self.printText(']]\n')
              if type(cov_theta_optimum) == float:
249
                  self.printText('\n=> COVARIANCE MATRIX IS INFINITE!\n')
250
251
                  return
252
              PExp_optimum = f(x, *theta_optimum)
253
              # Total Sum of Squares (TSS)
254
              TSS_corrected = ((PExp-PExp.mean())**2).sum()
255
              TSS_uncorrected = (PExp**2).sum()
256
              # Residual Sum of Squares (RSS) or Sum of Squared Residuals (SSR) or
257
              # Sum of Squared Errors of Prediction (SSE)
258
              RSS = ((PExp-PExp_optimum)**2).sum()
259
              # Explained Sum of Squares (ESS)
260
              ESS_uncorrected = TSS_uncorrected-RSS
261
              # Mean Total Sum of Squares
262
              MST_corrected = TSS_corrected/(N-1)
```

263	# Mean Residual Sum of Squares
264	MSR = RSS/(N-P)
265	# Mean Explained Sum of Squares
205	WE uncompated = ECC uncompated/D
200	MSE_uncorrected - ESS_uncorrected/P
207	$a_{1}p_{1}a_{2} = 0.05$
208	F_critical_uncorrected = stats.i.isi(alpha, N-P, P)
269	F_value_uncorrected = MSE_uncorrected/MSR
270	<pre>Pr_F_value_uncorrected = stats.f.sf(F_value_uncorrected, N-P, P)</pre>
271	s = sqrt(MSR)
272	R2 = 1-RSS/TSS_corrected
273	R2_bar = 1-MSR/MST_corrected
274	ASE = sqrt(cov_theta_optimum.diagonal())
275	corr_theta_optimum = (cov_theta_optimum/ASE).T/ASE
276	t_critical = stats.t.isf(alpha/2, N-P)
277	t_value = theta_optimum/ASE
278	<pre>Pr_tvalue = stats.t.sf(abs(t_value), N-P)*2</pre>
279	CI_theta = plus_minus(theta_optimum, t_critical*ASE)
280	<pre>self.printText('\nNon-Linear Least Squares Summary Statistics\n\n')</pre>
281	<pre>self.printText('Function: y = {0}\n\n'.format('UNIQUAC'))</pre>
282	self.printText('Source DF Sum of Squares Mean Square '
283	'F-value Pr(>F)\n')
284	self.printText('Regression {0:4d} {1:16.6f} {2:16.6f} {3:12.6f} '
285	<pre>/ {4.8 6f}\n' format(P_ESS uncorrected_MSE uncorrected_F value uncorrected</pre>
286	Pr F value uncorrected))
287	self printTevt ('Regidual (0.1d) (1.16 & fb (2.16 & fb ha' format (N-D RSS))
281	seii.printiext(kesiduai ا (۵.40) ۲۲.10.01) ۲۲.10.01 ۲۳.101mat(א-۲, אסט,
288	(N, M, M)
209	self.printlext(' oncorrected lotal $\{0.44\}$ $\{1.16.65\}$ $\{n^2.101mat(N, 155_uncorrected)\}$
290	self.printlext(' (Corrected lotal) {0:4d} {1:10.01} \n\n'.lormat(N-1, ISS_corrected))
291	self.printlext('alpha = $\{0:8.6I\}$ t-critical = $\{1:8.6I\}$ \n\n'.format(alpha, t_critical))
292	self.printlext('s = {0:8.6f} K-sq = {1:8.6f} K-sq(adj) = {2:8.6f}\n\n'.format(s, K2,
293	R2_bar))
294	self.printText('Parameter Estimate Asymptotic t-value '
295	<pre>' Pr(> t) Asymptotic {0:2.0%}\n'.format(1-alpha))</pre>
296	self.printText(' Std. Error '
297	' Confidence Interval\n')
298	self.printText(' /'
299	' Lower Upper\n')
300	for i in range(P):
301	self.printText('{0:10s} {1:16.6f} {2:20.6f} {3:12.6f} {4:8.6f} {5:23.6f} '
302	' {6:23.6f}\n'.format('theta[{0}]'.format(i), theta_optimum[i], ASE[i], t_value[i],
303	<pre>Pr_tvalue[i], CI_theta[0][i], CI_theta[1][i]))</pre>
304	<pre>self.printText('\nParameter Correlation Matrix\n ')</pre>
305	for i in range(P):
306	<pre>self.printText('{0:11s}'.format(' theta[{0}]'.format(i)))</pre>
307	for i in range(P):
308	self.printText('\n{0:10s}'.format('theta[{0}]'.format(i)))
309	for j in range(P):
310	self.printText(' {0:9.6f}'.format(corr theta optimum[i][i]))
311	Gamma = ThermodynamicModels IINTOILAC(r q a x TExp)
312	P(a c = array(man(s)man(s)maxP(amma*P(sat)))
313	dP = abs(PExp-PCalc)
314	vCalc = ((x*Camma*PSat) T/array(man(sum x*ThermodynamicModels INTONAC(r a s x TExp))*
315	yoaro ((Argammari Sac).i) array (map(Sum,ArinermodynamichodetS.UNiQUAG(1,q,a,X,1EXP)* DCa+))) T
316	$du = aba(u = u^{2})$
310	uy - abs(y=y0alc)
317	sum_ayket, yNull = [],[]
318	for 1 in range(NComp-1):
319	sum_dyRel.append(0.)
320	yNull.append(0)
321	for i in range(N):

323	if y[i,j] == 0.:
324	yNull[j] += 1
325	else:
326	<pre>sum_dyRel[j] += dy[i,j]/y[i,j]</pre>
327	for i in range(NComp-1):
328	<pre>self.printText('\n\nMaximum deviation of y{} = {:8.6f}\n'.format(i+1, max(dy[:,i])))</pre>
329	<pre>self.printText('Average absolute deviation of y{} = {:8.6f}\n'.format(i+1,</pre>
330	sum(dy[:, i])/N))
331	self.printText('Average relative deviation of v{} ({} null points) = {:5.2%}'.format(
332	i+1, vNull[i], sum dvRel[i]/N))
333	<pre>self.printText('\n\nMaximum deviation of Pressure = {:7.2f}\n'.format(max(dP)))</pre>
334	<pre>self.printText('Average absolute deviation of Pressure = {:7.2f}\n'.format(sum(dP)/N))</pre>
335	<pre>self.printText('Average relative deviation of Pressure = {:5.2%}\n\nReference '.format(</pre>
336	<pre>sum(dP/PExp)/N))</pre>
337	for i in range(NComp-1):
338	<pre>self.printText(' x{} '.format(i+1))</pre>
339	for i in range(NComp-1):
340	<pre>self.printText(' y{0}Exp - y{0}Calc = abs(dy{0}) '.format(i+1))</pre>
341	<pre>self.printText(' PExp - PCalc = abs(dP) (mmHg) TExp (°C)\n')</pre>
342	<pre>for i in range(N):</pre>
343	<pre>self.printText('{:^10}'.format(Refs[i]))</pre>
344	<pre>for j in range(NComp-1): self.printText(' {:8.6f} '.format(x[i, j]))</pre>
345	<pre>for j in range(NComp-1):</pre>
346	self.printText(' {:8.6f} - {:8.6f} = {:8.6f} '. \
347	<pre>format(y[i,j], yCalc[i,j], dy[i,j]))</pre>
348	self.printText(' {:9.2f} - {:9.2f} = {:9.2f} {:7.3f}\n'. \
349	<pre>format(PExp[i], PCalc[i], dP[i], TExp[i]-273.15))</pre>
350	<pre>self.printText('\n Gamma1 ')</pre>
351	<pre>for i in range(NComp-1):</pre>
352	<pre>self.printText('Gamma{} '.format(i+2))</pre>
353	for i in range(NComp):
354	<pre>self.printText('PSat{} '.format(i+1))</pre>
355	<pre>self.printText('PExp T (°C)\n')</pre>
356	for i in range(N):
357	for j in range(NComp):
358	<pre>self.printText('{:9.5f} '.format(Gamma[i,j]))</pre>
359	for j in range(NComp):
360	<pre>self.printText('{:9.2f} '.format(PSat[i,j]))</pre>
361	<pre>self.printText('{:7.2f} {:7.3f}\n'.format(PExp[i], TExp[i]-173.15))</pre>
362	return
363	
364	
365	<pre>def main():</pre>
366	app = QApplication(sys.argv)
367	$_{-} = Form()$
368	<pre>sys.exit(app.exec_())</pre>
369	
370	
371	<pre>iiname == 'main': ()</pre>
372	main()

C.4 Arquivo com Dados de Entrada

Para melhor compreensão do formato do arquivo com dados de entrada, e também como base para a criação de novos arquivos, á apresentado, a seguir, uma listagem do

arquivo Dados.dat que contém os dados para o metanol e o etanol:

_ Dados.dat .

```
1
    Methanol Ethanol
 \mathbf{2}
    2 # DDB Componente Number (CN) 110
 3
    8.08097 1582.27 239.700 15 100 # Taverage=(T2*(T4-T3)+T3*(T2-T1))/((T4-T3)+(T2-T1))
 4
    7.97010 1521.23 233.970 65 214
 5
    2 # DDB Componente Number (CN) 11
 6
    8.20417 1642.89 230.341 -57 80 # Taverage=(T2*(T4-T3)+T3*(T2-T1))/((T4-T3)+(T2-T1))
 7
    7.68117 1332.04 199.177 77 243
    1.4311 1.4320 # DDB CN 110
 8
 9
    2.1055 1.9720 # DDB CN 11
10
    0 # noUse (0 to use and 1 don'T use)
11
    "Niesen et. al., Fluid Phase Equilibria 1986, 31, 283" # Reference
12
    1 2 12 # Index1 Index2 Index3 NumberOfPoints
13
    0.161 0.225 1848.90 100. # x1 y1 P(mmHg) T(°C).
    0.428 0.529 2086.67 100. # Used P(mmHg)=(760/101.325)*P(kPa)
14
15
    0.591 0.691 2262.19 100.
16
    0.828 0.878 2488.70 100.
17
   0.948 0.967 2601.96 100.
18 1.000 1.000 2647.72 100.
19 0.000 0.000 5701.97 140.
20 0.420 0.502 6658.30 140.
   0.580 0.646 7060.33 140.
21
22
    0.829 0.865 7717.38 140.
23
    0.950 0.959 7998.66 140.
24
    1.000 1.000 8127.67 140.
25
    0 # noUse (se and 1 don'T use)
26
    "Kurihara et al., J. Chem. Eng. Data 1993, 38, 446" # Reference
27
    1 2 11 # Index1 Index2 Index3 NumberOfPoints
28
    0.074 0.119 760. 77.11 # x1 y1 P(mmHg) T(°C).
29
   0.113 0.177 760. 76.48 # Used P(mmHg)=(760/101.325)*P(kPa) and T(°C)=T(K)-273.15
30 0.195 0.292 760. 75.21
31
   0.238 0.349 760. 74.53
32
    0.329 0.459 760. 73.20
33
    0.424 0.561 760. 71.83
34
    0.529 0.663 760. 70.35
35
    0.581 0.709 760. 69.68
36
    0.682 0.792 760. 68.32
37
    0.717 0.818 760. 67.91
38
    0.935 0.963 760. 65.26
```

Neste arquivo, a separação entre itens deve ser feita com espaços ou tabulações e, os comentários devem ser precedidos pelo caractere #. A linha 1 informa os componentes presentes. As linhas de 2 a 7 informam para cada componente, primeiro, o número de equações de Antoine utilizadas para cada componente e, em seguida, as respectivas constantes destas equações com sua faixa de temperatura. Caso queira-se desprezar a pressão de saturação, usa-se o valor 0 para número de equações. Portando, caso isto seja usado, não se acrescenta as linhas que corresponderiam as respectivas equações de Antoine para este componente. As linhas 8 e 9 informam os parâmetro r e q do modelo UNIQUAC. A seguir são informados os dados de equilíbrio, isto é feito da seguinte forma: na primeira linha (linhas 10 e 25) é utilizada o valor 0 caso os dados desta referência devam ser usados, senão, usa-se 1; na segunda linha (linhas 11 e 26) cita-se a referência bibliográfica dos

dados; na terceira linha (12 e 27) informa-se os índices relativos aos componentes (1 para metanol e 2 para etanol, neste exemplo) presentes nos dados de equilíbrio e em que ordem eles aparecem e, o número de pontos experimentais; as linhas seguintes (de 13 a 24 e de 28 a 38) informam os dados experimentais, propriamente ditos, iniciando pelos dados da composição de equilíbrio da fase líquida e depois da fase vapor, cada fase com menos um componente (que será calculado em função dos dados informados) e na ordem com que foram apresentados pelos índices na linha anterior, e terminando com a pressão (em mmHg) e com a temperatura (em °C). Todos os dados numéricos de ponto flutuante devem utilizar ponto (.) como ponto decimal.

APÊNDICE D – Programa JAFOSSMS

Neste apêndice, primeiramente, apresenta-se o ícone do programa (Figura 64) e os códigos do arquivo *Qt Resource*, da interface gráfica, do *widget* do *matplotlib* (componente da GUI, especificamente: a área do gráfico) e do programa principal. E, por último, explica-se a formatação dos arquivos com dados de entrada. Todos estes itens, juntos, constituem o programa *JAFOSSMS*.

Os códigos apresentados aqui permitem recriar, a partir do conteúdo impresso, o arquivo original. Para que isso seja possível, é necessário que o texto impresso (incluindo os espaços à esquerda, na exata quantidade) seja gravado na forma de arquivo de texto sem formatação, com os respectivos nomes (exceto os de dados de entrada, onde, apenas, sugere-se que tenham as extensões .in e .dat respectivamente para principal e para específico) e, OBRIGATORIAMENTE, com codificação UTF-8.

D.1 Ícone do Programa

A Figura 64 ilustra a imagem do ícone do programa *JAFOSSMS*. Esta, para poder ser utilizada no programa *JAFOSSMS*, deverá ser copiada e gravada como arquivo de imagem do tipo *Portable Network Graphics* (PNG) com tamanho de 512x512 pontos e, com nome: JAFOSSMS.png.

Figura 64 – Ícone do Programa JAFOSSMS.

Fonte: O autor.

D.2 Código Fonte do Arquivo Qt Resource

_ Form.qrc -

```
1 <RCC>
2 <qresource>
3 <file>JAFOSSMS.png</file>
4 </qresource>
5 </RCC>
```

D.3 Código Fonte da Interface Gráfica do Usuário

ſ	Form.ui
1	xml version="1.0" encoding="UTF-8"?
2	<ui version="4.0"></ui>
3	<class>Form</class>
4	<widget class="QWidget" name="Form"></widget>
5	<property name="geometry"></property>
6	<rect></rect>
7	<x>0</x>
8	<y>0</y>
9	<width>835</width>
10	<height>445</height>
11	
12	
13	<property name="sizePolicy"></property>
14	<sizepolicy hsizetype="Minimum" vsizetype="Minimum"></sizepolicy>
15	<horstretch>0</horstretch>
16	<verstretch>0</verstretch>
17	
18	
19	<property name="windowTitle"></property>
20	<string>JAFOSSMS - Solubilidade de Sais em Mistura de Solventes</string>
21	
22	<property name="windowIcon"></property>
23	<iconset resource="Form.qrc"></iconset>
24	<normaloff>:/JAFOSSMS.png</normaloff> :/JAFOSSMS.png
25	
26	<layout class="QVBoxLayout" name="verticalLayout_Form"></layout>
27	<item></item>
28	<widget class="QTabWidget" name="tabWidget"></widget>
29	<property name="currentIndex"></property>
30	<number>0</number>
31	
32	<widget class="QWidget" name="tab_GeneralReport"></widget>
33	<attribute name="title"></attribute>
34	<pre><string>RELA&TORIO GERAL</string></pre>
35	
36	<layout class="QVBoxLayout" name="verticalLayout_GeneralReport"></layout>
37	<item></item>
38	<pre><widget class="QTextEdit" name="textEdit_GeneralReport"></widget></pre>
39	
4U	
41 40	<pre>\tayout class="WHEOXLayout" name="norizontalLayout_GeneralKeport" stretch="4,1,0"></pre>
42	<pre>\ltem></pre>
43 44	<pre>\widget class="Wrusnbutton" name="pusnbutton_SaveGeneralKeport"></pre>
14 15	<pre>\property mame="text"></pre>
τυ	Sullig/Glawamp; var netatorio Gerain/String/

46	
47	
48	
49	<item></item>
50	<widget class="QSlider" name="horizontalSlider_GeneralReport"></widget>
51	<property name="orientation"></property>
52	<enum>Qt:::Horizontal</enum>
53	
54	
55	
56	<item></item>
57	<widget class="QLabel" name="label_Slider_GeneralReport"></widget>
58	
59	
60	
61	
62	
63	<widget class="QWidget" name="tab_SingleSolvent"></widget>
64	<attribute name="title"></attribute>
65	<string>SOLVENTE &SIMPLES</string>
66	
67	<layout class="QVBoxLayout" name="verticalLayout_SingleSolvent"></layout>
68	<item></item>
69	<layout class="QGridLayout" name="gridLayout_Plot1"></layout>
70	<pre><item column="1" row="0"></item></pre>
71	<layout class="QHBoxLayout" name="horizontalLayout_Plot1_y"></layout>
72	<item></item>
73	<widget class="QLabel" name="label_Plot1_y_1"></widget>
74	<property name="text"></property>
75	<string>Ordenada:</string>
76	
77	
78	
79	<item></item>
80	<widget class="QComboBox" name="comboBox_Plot1_y_C"></widget>
81	<item></item>
82	<property name="text"></property>
83	<string>Molalidade</string>
84	
85	
86	<item></item>
87	<property name="text"></property>
88	<string>Molaridade</string>
89	
90	
91	<item></item>
92	<property name="text"></property>
93	<pre><string>Fração Molar</string></pre>
94	
95 06	
90	<item></item>
97	<property name="text"> (atming)Function Minimum (atming)Function (atming)Function (atming)Function (atming)Function (atming) (atming)Function (atming) (atmi</property>
98	<pre>>string>rraçao Massica </pre>
99	
101	
101	<pre> </pre>
102	\/IUUU/
103	<pre></pre>
104 105	<pre>\widget class-"WLabel" name="label_Plot1_y_2"></pre>
102	<property name="text"></property>

106	<string>do Sal em</string>
107	
108	
109	
110	<item></item>
111	<pre><widget class="QComboBox" name="comboBox_Plot1_y_solv"></widget></pre>
112	<item></item>
113	<property name="text"></property>
114	<string>MEG</string>
115	
116	
117	<item></item>
118	<property name="text"></property>
119	<string>Água</string>
120	
121	
122	
123	
124	<item></item>
125	<pre><spacer name="horizontalSpacer_Plot1_y"/></pre>
126	<property name="orientation"></property>
127	<enum>Qt:::Horizontal</enum>
128	
129	<pre><pre>roperty name="sizeHint" stdset="0"></pre></pre>
130	<size></size>
131	<width>0</width>
132	<height>0</height>
133	
134	
135	
136	
137	
138	
139	<item column="0" row="0" rowspan="2"></item>
140	<widget class="QPushButton" name="pushButton_Plot1"></widget>
141	<property name="sizePolicy"></property>
142	<pre><sizepolicy hsizetype="Minimum" vsizetype="Expanding"></sizepolicy></pre>
143	<horstretch>0</horstretch>
144	<verstretch>0</verstretch>
145	
146	
147	<pre><property name="text"></property></pre>
148	<pre><string>Grafico &i</string> comparison/com</pre>
149	<pre>/property> </pre>
151	<pre>//winder/ //item></pre>
152	() item rou="1" column="1"
152	<pre><low low="" low<="" td=""></low></pre>
154	<pre><item></item></pre>
155	<pre><widget class="OLabel" name="label Plot1 x"></widget></pre>
156	<pre><pre>cproperty name="text"></pre></pre>
157	<pre><string>Abscissa: Temperatura em</string></pre>
158	
159	
160	
161	<item></item>
162	<widget class="QComboBox" name="comboBox_Plot1_x_T"></widget>
163	<item></item>
164	<property name="text"></property>
165	<string>Kelvins</string>

166	
167	
168	<item></item>
169	<property name="text"></property>
170	<string>Graus Celsius</string>
171	
172	
173	<item></item>
174	<property name="text"></property>
175	<pre><string>Graus Rankine</string></pre>
176	
177	
178	<item></item>
179	<property name="text"></property>
180	<pre><string>Graus Fahrenheit</string></pre>
181	
182	
183	
184	
185	<item></item>
186	<pre><spacer name="horizontalSpacer_Plot1_x"/></pre>
187	<property name="orientation"></property>
188	<pre><enum>Qt::Horizontal</enum></pre>
189	
190	<property name="sizeHint" stdset="0"></property>
191	<size></size>
192	<width>0</width>
193	<height>0</height>
194	
195	
196	
197	
198	
199	
200	
201	
202	<item></item>
203	<spacer name="verticalSpacer_SingleSolvent"/>
204	<property name="orientation"></property>
205	<enum>Qt::Vertical</enum>
206	
207	<property name="sizeHint" stdset="0"></property>
208	<size></size>
209	<width>0</width>
210	<height>0</height>
211	
212	
213	
214	
215	
216	
217	<widget class="QWidget" name="tab_MixedSolvents"></widget>
218	<attribute name="title"></attribute>
219	<string>&MISTURA DE SOLVENTES</string>
220	
221	<layout class="QVBoxLayout" name="verticalLayout_MixedSolvents"></layout>
222	<item></item>
223	<layout class="QHBoxLayout" name="horizontalLayout_Isotherms"></layout>
224	<item></item>

าาต	
220	<pre></pre>
221	(stilligzaamp,istermas para/stilligz
220	
229	<property name="buddy"> () () () () () () () () () () () () () (</property>
230	<cstring>lineEdit_lsotherms</cstring>
231	
232	
233	
234	<item></item>
235	<widget class="QComboBox" name="comboBox_Isotherms_mode"></widget>
236	<item></item>
237	<property name="text"></property>
238	<string>Cálculo Normal / Regressão</string>
239	
240	
241	<item></item>
242	<property name="text"></property>
243	<string>Predição</string>
244	
245	
246	
247	
248	<item></item>
249	<widget class="QLabel" name="label_Isotherms_2"></widget>
250	<property name="text"></property>
251	<string>em</string>
252	
253	
254	
255	<item></item>
256	<widget class="QComboBox" name="comboBox_Isotherms_T"></widget>
257	<item></item>
258	<property name="text"></property>
259	<string>Kelvins</string>
260	
261	
262	<item></item>
263	<property name="text"></property>
264	<string>Graus Celsius</string>
265	
266	
267	<item></item>
268	<property name="text"></property>
269	<string>Graus Rankine</string>
270	
271	
272	<item></item>
273	<property name="text"></property>
274	<string>Graus Fahrenheit</string>
275	
276	
277	
278	
279	<item></item>
280	<widget class="QLineEdit" name="lineEdit_Isotherms"></widget>
281	
282	<item></item>
283	<widget class="QPushButton" name="pushButton_Isotherms_Choose"></widget>
284	<property name="text"></property>
285	<string>&Escolher</string>
286	
-----	---
287	
288	
289	
290	
291	<item></item>
292	<widget class="QGroupBox" name="groupBox Plots"></widget>
293	<pre><pre>cproperty name="title"></pre></pre>
294	<pre><string>Gráficos:</string></pre>
295	
296	<pre></pre> <pre></pre> <pre></pre> <pre></pre>
297	<pre><item></item></pre>
201	<pre><lown: <layout class="OCridLayout" name="gridLayout Plot9"></layout></lown: </pre>
200	$(i_1)^{(i_1)} = 0^{(i_1)} = 0^{(i_1)} = 0^{(i_1)} = 0^{(i_1)} = 0^{(i_1)}$
300	<pre><vidget class="OPushButton" name="nushButton Plot2"></vidget></pre>
301	<pre>(widget class of ashbatton name pashbatton_iiotz)</pre>
302	<pre>sizeholicy heizetune="Minimum" usizetune="Evnanding")</pre>
303	<pre></pre>
304	(verstretch)0(/verstretch)
305	
306	
307	() property name-"text"
308	setring)Grafico kamp:22/string)
300	<pre></pre>
310	(vidget)
310	vite and a second se</td
312	<pre><item column="1" row="1"></item></pre>
313	<pre><low <br="" column="" i=""><layout class="OHBoylayout" name="horizontallayout Plot? y"></layout></low></pre>
314	<pre><itom></itom></pre>
315	<pre><widget class="0Label" name="label Plot2 x 1"></widget></pre>
316	<pre>survey states 'text'></pre>
317	<pre><string>Abscissa: Fracão</string></pre>
318	
319	
320	
321	<item></item>
322	<widget class="QComboBox" name="comboBox_Plot2_x_C_SF"></widget>
323	<item></item>
324	<property name="text"></property>
325	<string>Molar</string>
326	
327	
328	<item></item>
329	<property name="text"></property>
330	<string>Mássica</string>
331	
332	
333	
334	
335	<item></item>
336	<widget class="QLabel" name="label_Plot2_x_2"></widget>
337	<property name="text"></property>
338	<string>do</string>
339	
340	
341	
342	<item></item>
343	<widget class="QComboBox" name="comboBox_Plot2_x_solv"></widget>
344	<item></item>
345	<pre>> <pre>> <pre>> </pre> <pre>> </pre></pre></pre>

346	<string>MEG</string>
347	
348	
349	<item></item>
350	<property name="text"></property>
351	<string>Água</string>
352	
353	
354	
355	
356	<item></item>
357	<widget class="QLabel" name="label_Plot2_x_3"></widget>
358	<property name="text"></property>
359	<string>Livre de Sal</string>
360	
361	
362	
363	<item></item>
364	<pre><spacer name="horizontalSpacer_Plot2_x"/></pre>
365	<property name="orientation"></property>
366	<enum>Qt:::Horizontal</enum>
367	
368	<property name="sizeHint" stdset="0"></property>
369	<size></size>
370	<width>0</width>
371	<height>0</height>
372	
373	
374	
375	
376	
377	
378	<pre><item column="1" row="0"></item></pre>
379	<layout class="QHBoxLayout" name="horizontalLayout_Plot2_y"></layout>
380	<item></item>
381	<widget class="QLabel" name="label_Plot2_y_1"></widget>
382	<property name="text"></property>
383	<string>Ordenada: </string>
384	
385	
386	
387	<item></item>
388	<widget class="QComboBox" name="comboBox_Plot2_y_C"></widget>
389	<item></item>
390	<property name="text"></property>
391	<string>Molalidade</string>
392	
393	
394	<item></item>
395	<property name="text"></property>
396	<string>Molaridade</string>
397	
398	
399	<item></item>
400	<property name="text"> .</property>
401	<string>Fração Molar</string>
402	
403	
404	<pre><item></item></pre>
405	<property name="text"></property>

406	<string>Fração Mássica</string>
407	
408	
409	
410	
411	<item></item>
412	<widget class="QLabel" name="label_Plot2_y_2"></widget>
413	<property name="text"></property>
414	<pre><string>do Sal em Mistura de Solventes</string></pre>
415	
416	
417	
418	<item></item>
419	<spacer name="horizontalSpacer_Plot2_y"/>
420	<property name="orientation"></property>
421	<enum>Qt::Horizontal</enum>
422	
423	<property name="sizeHint" stdset="0"></property>
424	<size></size>
425	<width>0</width>
426	<height>0</height>
427	
428	
429	
430	
431	
432	
433	
454	
435	<pre> ////////////////////////////////////</pre>
430	(widget class- line name- line_riots_1 /
438	<pre><pre>spioperty name= offentation > </pre></pre>
430	
440	
441	
442	<item></item>
443	<layout class="QGridLayout" name="gridLayout_Plot3"></layout>
444	<pre><item column="1" row="0"></item></pre>
445	<layout class="QHBoxLayout" name="horizontalLayout_Plot3_y"></layout>
446	<pre><item></item></pre>
447	<widget class="QLabel" name="label_Plot3_y_1"></widget>
448	<property name="text"></property>
449	<string>Ordenada: </string>
450	
451	
452	
453	<item></item>
454	<widget class="QComboBox" name="comboBox_Plot3_y_F"></widget>
455	<item></item>
456	<property name="text"></property>
457	<pre><string>Coeficiente de Atividade</string></pre>
458	
459	
460	<item></item>
461	<property name="text"></property>
462	<pre><string>Logaritmo do Coeficiente de Atividade</string></pre>
463	
464	
465	

466	
467	<item></item>
468	<widget class="QLabel" name="label_Plot3_y_2"></widget>
469	<property name="text"></property>
470	<pre><string>do Sal em Mistura de Solventes</string></pre>
471	
472	
473	
474	<item></item>
475	<pre><spacer name="horizontalSpacer_Plot3_y"/></pre>
476	<property name="orientation"></property>
477	<pre><enum>Qt::Horizontal</enum></pre>
478	
479	<property name="sizeHint" stdset="0"></property>
480	<size></size>
481	<width>0</width>
482	<height>0</height>
483	
484	
485	
486	
487	
488	
489	<pre><item column="0" row="0" rowspan="2"></item></pre>
490	<pre><widget class="QPushButton" name="pushButton_Plot3"></widget></pre>
491	<property name="sizePolicy"></property>
492	<pre><sizepolicy hsizetype="Minimum" vsizetype="Expanding"></sizepolicy></pre>
493	<horstretch>0</horstretch>
494	<verstretch>0</verstretch>
495	
496	
497	<property name="text"></property>
498	<string>Gráfico &3</string>
499	
500	
501	
502	<item column="1" row="1"></item>
503	<layout class="QHBoxLayout" name="horizontalLayout_Plot3_x"></layout>
504	<item></item>
505	<widget class="QLabel" name="label_Plot3_x_1"></widget>
506	<property name="text"></property>
507	<string>Abscissa: Fração</string>
508	
509	
510	
511	<item></item>
512	<widget class="QComboBox" name="comboBox_Plot3_x_C_SF"></widget>
513	<item></item>
514	<property name="text"></property>
515	<string>Molar</string>
516	
517	
518	<item></item>
519	<property name="text"></property>
520	<string>Mássica</string>
521	
522	
523	
524	
525	<item></item>

526	<pre><widget class="NI abel" name="label Plot3 x 0"></widget></pre>
527	(widget class diabet name laber_11000_x_2)
520	cotring de (string)
520	<pre><string>do</string></pre>
529	
530	
531	
532	<item></item>
533	<widget class="QComboBox" name="comboBox_Plot3_x_solv"></widget>
534	<item></item>
535	<property name="text"></property>
536	<string>MEG</string>
537	
538	
539	<item></item>
540	<property name="text"></property>
541	<string>Água</string>
542	
543	
544	
545	
546	<pre>/ <item></item></pre>
547	<pre><ruidget class="NI abel" name="label Plot3 x 3"></ruidget></pre>
548	(Widget Class- Widget name- laber_11005_x_0 /
540	contraine de California en
549	(string>Livre de Sai(/string>
550	
551	
552	
553	<item></item>
554	<spacer name="horizontalSpacer_Plot3_x"/>
555	<property name="orientation"></property>
556	<enum>Qt::Horizontal</enum>
557	
558	<property name="sizeHint" stdset="0"></property>
559	<size></size>
560	<width>0</width>
561	<height>0</height>
562	
563	
564	
565	
566	
567	
568	
560	
570	
570	
571	<pre><widget class="Line" name="line_Plots_2"></widget></pre>
572	<pre><pre>roperty name="orientation"></pre></pre>
573	<pre><enum>Qt::Horizontal</enum></pre>
574	
575	
576	
577	<item></item>
578	<layout class="QGridLayout" name="gridLayout_Plot4"></layout>
579	<item column="1" row="0"></item>
580	<layout class="QHBoxLayout" name="horizontalLayout_Plot4_y"></layout>
581	<item></item>
582	<widget class="QLabel" name="label_Plot4_y_1"></widget>
583	<property name="text"></property>
584	<string>Ordenada: </string>
585	

586	
587	
588	<item></item>
589	<widget class="QComboBox" name="comboBox_Plot4_y_F_E"></widget>
590	<item></item>
591	<property name="text"></property>
592	<string>Potencial Químico Padrão de Excesso</string>
593	
594	
595	<item></item>
596	<property name="text"></property>
597	<string>Logaritmo de Excesso do Coeficiente de Atividade</string>
598	
599	
600	<item></item>
601	<property name="text"></property>
602	<string>Logaritmo de Excesso da Molalidade</string>
603	
604	
605	
606	
607	<item></item>
608	<widget class="QLabel" name="label_Plot4_y_2"></widget>
609	<property name="text"></property>
610	<pre><string>do Sal em Mistura de Solventes</string></pre>
611	
612	
613	
614	<1tem>
615 C1C	<pre><spacer name="horizontalSpacer_Plot4_y"/> </pre>
616	<property name="orientation"> for NOL H is a life</property>
01 <i>1</i>	<pre><enum>ut::Horizontal</enum> </pre>
610	
620	Coizes
621	suidth>0
622	<pre><height>0</height></pre>
623	
624	
625	
626	
627	
628	
629	<pre><item column="0" row="0" rowspan="2"></item></pre>
630	<pre><widget class="QPushButton" name="pushButton_Plot4"></widget></pre>
631	<property name="sizePolicy"></property>
632	<pre><sizepolicy hsizetype="Minimum" vsizetype="Expanding"></sizepolicy></pre>
633	<horstretch>0</horstretch>
634	<verstretch>0</verstretch>
635	
636	
637	<property name="text"></property>
638	<string>Gráfico &4</string>
639	
640	
641	
642	<item column="1" row="1"></item>
643	<layout class="QHBoxLayout" name="horizontalLayout_Plot4_x"></layout>
644	<item></item>
645	<widget class="QLabel" name="label_Plot4_x_1"></widget>

646	<property name="text"></property>
647	<pre><string>Abscissa: Fração</string></pre>
648	
649	
650	
651	<item></item>
652	<widget class="QComboBox" name="comboBox_Plot4_x_C_SF"></widget>
653	<item></item>
654	<property name="text"></property>
655	<string>Molar</string>
656	
657	
658	<item></item>
659	<property name="text"></property>
660	<string>Mássica</string>
661	
662	
663	
664 CC5	
600 666	<pre></pre>
667	(widget class- qLabel label_flot4_x_2 /
668	<pre></pre>
669	
670	
671	
672	<pre></pre>
673	<pre><widget class="QComboBox" name="comboBox Plot4 x solv"></widget></pre>
674	<item></item>
675	<property name="text"></property>
676	<string>MEG</string>
677	
678	
679	<item></item>
680	<property name="text"></property>
681	<string>Água</string>
682	
683	
684	
685	
686	<item></item>
687	<pre><widget class="ULabel" name="label_Plot4_x_3"></widget></pre>
688	<property name="text"> <property name="text"></property></property>
600	(proportu)
601	
692	
693	<pre><item></item></pre>
694	<pre><spacer name="horizontalSpacer Plot4 x"/></pre>
695	<property name="orientation"></property>
696	<pre><enum>Qt::Horizontal</enum></pre>
697	
698	<property name="sizeHint" stdset="0"></property>
699	<size></size>
700	<width>0</width>
701	<height>0</height>
702	
703	
704	
705	

706	
707	
708	
709	
710	
711	
712	
713	<item></item>
714	<spacer name="verticalSpacer_MixedSolvents"/>
715	<property name="orientation"></property>
716	<pre><enum>Qt:::Vertical</enum></pre>
717	
718	<property name="sizeHint" stdset="0"></property>
719	<size></size>
720	<width>0</width>
721	<height>0</height>
722	
723	
724	
725	
726	
727	
728	<widget class="QWidget" name="tab_GraphicAndStatistics"></widget>
729	<attribute name="title"></attribute>
730	<pre><string>&GRÁFICO E ESTATÍSTICAS</string></pre>
731	
732	<layout class="QVBoxLayout" name="verticalLayout_GraphicAndStatistics"></layout>
733	<item></item>
734	<widget class="QSplitter" name="splitter_GraphicAndStatistics"></widget>
735	<property name="orientation"></property>
736	<enum>Qt::Horizontal</enum>
737	
738	<widget class="QWidget" name="layoutWidget"></widget>
739	<layout class="QVBoxLayout" name="verticalLayout_Graphic"></layout>
740	<item></item>
741	<pre><widget class="mplwidget" name="mplwidget_Graphic" native="true"></widget></pre>
742	<pre><pre>roperty name="sizerolicy"></pre></pre>
743	<pre><sizepoilcy isizetype="Expanding" vsizetype="Expanding"></sizepoilcy></pre>
744	
746	
747	
748	
749	
750	<item></item>
751	<layout class="QHBoxLayout" name="horizontalLayout Graphic"></layout>
752	<item></item>
753	<pre><layout class="QVBoxLayout" name="verticalLayout_Graphic_1"></layout></pre>
754	<item></item>
755	<widget class="QCheckBox" name="checkBox_Graphic_NavigationToolbar"></widget>
756	<property name="text"></property>
757	<pre><string>Barra de &Navegação</string></pre>
758	
759	
760	
761	<item></item>
762	<layout class="QHBoxLayout" name="horizontalLayout_Graphic_Legend"></layout>
763	<item></item>
764	<widget class="QCheckBox" name="checkBox_Graphic_Legend"></widget>
765	<property name="text"></property>

766	<string>&Legenda:</string>
767	
768	
769	
770	<item></item>
771	<widget class="QSlider" name="horizontalSlider_Graphic_Legend"></widget>
772	<property name="orientation"></property>
773	<pre><enum>Qt::Horizontal</enum></pre>
774	
775	
776	
777	<item></item>
778	<widget class="QLabel" name="label_Slider_Graphic_Legend"></widget>
779	
780	
781	
782	
783	
784	<item></item>
785	<pre><spacer name="horizontalSpacer_Graphic"/></pre>
786	<property name="orientation"></property>
787	<pre><enum>Qt::Horizontal</enum></pre>
788	
789	<pre><pre>cproperty name="sizeHint" stdset="0"></pre></pre>
790	
791	<pre></pre>
793	
794	
795	
796	
797	<item></item>
798	<pre><layout class="QVBoxLayout" name="verticalLayout_Graphic_2"></layout></pre>
799	<item></item>
800	<layout class="QHBoxLayout" name="horizontalLayout_Graphic_AxesTicks"></layout>
801	<item></item>
802	<widget class="QLabel" name="label_Graphic_AxesTicks"></widget>
803	<property name="text"></property>
804	<string>Mar&cas nos Eixos:</string>
805	
806	<property name="buddy"></property>
807	<cstring>horizontalSlider_Graphic_AxesTicks</cstring>
808	
809	
810	
811	<1tem>
812	<pre><widget class="WS11der" name="horizontalS11der_Graphic_Axes11cks"></widget></pre>
013 014	(property name- orientation /
815	<pre></pre>
816	
817	
818	<pre></pre>
819	<pre><widget class="OLabel" name="label Slider Graphic AxesTicks"></widget></pre>
820	
821	
822	
823	<item></item>
824	<pre><layout class="QHBoxLayout" name="horizontalLayout_Graphic_AxesLabels"></layout></pre>
825	<item></item>

826	<pre><widget class="QLabel" name="label_Graphic_AxesLabels"></widget></pre>
827	<property name="text"></property>
828	<string>Rótulos dos &Eixos:</string>
829	
830	<property name="buddy"></property>
831	<pre><cstring>horizontalSlider_Graphic_AxesLabels</cstring></pre>
832	
833	
834	
835	<pre>/ item></pre>
836	<pre><widget class="OSlider" name="horizontalSlider Graphic AvesLabels"></widget></pre>
837	<pre>survey name="orientation"></pre>
838	<pre>cenum>Of ::Horizontal</pre>
839	
840	
841	widget</td
842	(item)
042 042	<pre> viident alaga="01abal" vara="labal Slider Crarkis Avaiabala"/> </pre>
040 044	(widget class- whater name- laber_Silder_Graphic_Axeshabers //
044	
845	
840	
847	
848	
849	
850	
851	
852	
853	<widget class="QWidget" name="layoutWidget"></widget>
854	<layout class="QVBoxLayout" name="verticalLayout_Statistics"></layout>
855	<item></item>
856	<widget class="QTextEdit" name="textEdit_Statistics"></widget>
857	
858	<item></item>
859	<layout class="QHBoxLayout" name="horizontalLayout_Statistics" stretch="4,1,0"></layout>
860	<item></item>
861	<pre><widget class="QPushButton" name="pushButton_SaveStatistics"></widget></pre>
862	<property name="text"></property>
863	<string>Gra&var Estatísticas</string>
864	
865	
866	
867	<item></item>
868	<widget class="QSlider" name="horizontalSlider_Statistics"></widget>
869	<property name="orientation"></property>
870	<enum>Qt::Horizontal</enum>
871	
872	
873	
874	<item></item>
875	<widget class="QLabel" name="label_Slider_Statistics"></widget>
876	
877	
878	
879	
880	
881	
882	
883	
884	
885	

886	
887	<item></item>
888	<layout class="QHBoxLayout" name="horizontalLayout_Datafile"></layout>
889	<item></item>
890	<widget class="QLabel" name="label_Datafile"></widget>
891	<property name="text"></property>
892	<string>Arquivo com &Dados de Entrada:</string>
893	
894	<property name="buddy"></property>
895	<cstring>lineEdit_Datafile</cstring>
896	
897	
898	
899	<item></item>
900	<widget class="QLineEdit" name="lineEdit_Datafile"></widget>
901	
902	<item></item>
903	<widget class="QPushButton" name="pushButton_Datafile_Browse"></widget>
904	<property name="text"></property>
905	<pre><string>&Procurar</string></pre>
906	
907	
908	
909	
910	
911 012	<pre><lowert close="OPPerFavore" nome="horizontallawout Dun Evit"></lowert></pre>
912 013	(item)
913 014	<pre><uidget class="ODushButton" name="nushButton Bun"></uidget></pre>
915	<pre><rre></rre></pre>
916	<pre>string>E&amp.vecutar</pre>
917	
918	
919	
920	<pre><item></item></pre>
921	<widget class="QPushButton" name="pushButton_Exit"></widget>
922	<property name="text"></property>
923	<string>Sai&r</string>
924	
925	
926	
927	
928	
929	
930	
931	<customwidgets></customwidgets>
932	<customwidget></customwidget>
933	<class>MplWidget</class>
934	<extends>QWidget</extends>
935	<pre><header>mplwidget.h</header></pre>
936	<pre><container>i</container> </pre>
937	<pre> </pre>
030 939	<pre>// customwidgets/ </pre>
939	<pre></pre>
940 9/1	<pre><tabstop>tauwiuget</tabstop></pre>
949	<pre><ubscop>conversionship (conversion)</ubscop></pre>
943	<pre><tabstop>passation_baveseneralReport(/tabstop></tabstop></pre>
944	<pre><tabstop>pushButton Plot1</tabstop></pre>
945	<tabstop>comboBox Plot1 v C</tabstop>

946	<tabstop>comboBox_Plot1_y_solv</tabstop>
947	<tabstop>comboBox_Plot1_x_T</tabstop>
948	<tabstop>comboBox_Isotherms_mode</tabstop>
949	<tabstop>comboBox_Isotherms_T</tabstop>
950	<tabstop>lineEdit_Isotherms</tabstop>
951	<tabstop>pushButton_Isotherms_Choose</tabstop>
952	<tabstop>pushButton_Plot2</tabstop>
953	<tabstop>comboBox_Plot2_y_C</tabstop>
954	<tabstop>comboBox_Plot2_x_C_SF</tabstop>
955	<tabstop>comboBox_Plot2_x_solv</tabstop>
956	<tabstop>pushButton_Plot3</tabstop>
957	<tabstop>comboBox_Plot3_y_F</tabstop>
958	<tabstop>comboBox_Plot3_x_C_SF</tabstop>
959	<tabstop>comboBox_Plot3_x_solv</tabstop>
960	<tabstop>pushButton_Plot4</tabstop>
961	<tabstop>comboBox_Plot4_y_F_E</tabstop>
962	<tabstop>comboBox_Plot4_x_C_SF</tabstop>
963	<tabstop>comboBox_Plot4_x_solv</tabstop>
964	<tabstop>checkBox_Graphic_NavigationToolbar</tabstop>
965	<tabstop>checkBox_Graphic_Legend</tabstop>
966	<tabstop>horizontalSlider_Graphic_Legend</tabstop>
967	<tabstop>horizontalSlider_Graphic_AxesTicks</tabstop>
968	<tabstop>horizontalSlider_Graphic_AxesLabels</tabstop>
969	<tabstop>textEdit_Statistics</tabstop>
970	<tabstop>pushButton_SaveStatistics</tabstop>
971	<tabstop>horizontalSlider_Statistics</tabstop>
972	<tabstop>lineEdit_Datafile</tabstop>
973	<tabstop>pushButton_Datafile_Browse</tabstop>
974	<tabstop>pushButton_Run</tabstop>
975	<tabstop>pushButton_Exit</tabstop>
976	
977	<resources></resources>
978	<include location="Form.qrc"></include>
979	
980	<connections></connections>
981	

D.4 Código Fonte do widget do matplotlib

_mplwidget.py _

```
from matplotlib import use, rcParams
1
\mathbf{2}
    use("Qt4Agg")
3
    rcParams['mathtext.fontset'] = 'stix'
4
    rcParams['backend.qt4'] = 'PySide'
5
    rcParams.update({'figure.autolayout': True})
6
    from matplotlib.backends.backend_qt4agg import (FigureCanvasQTAgg as FigureCanvas,
7
        NavigationToolbar2QT as NavigationToolbar)
8
    from matplotlib.figure import Figure
9
    from PySide.QtGui import QWidget, QVBoxLayout
10
11
12
    class MplCanvas(FigureCanvas):
13
14
        def __init__(self):
15
             self.fig = Figure()
16
             self.ax = self.fig.add_subplot(111)
17
             FigureCanvas.__init__(self, self.fig)
```

```
18
             FigureCanvas.updateGeometry(self)
19
20
21
    class MplWidget(QWidget):
22
23
         def __init__(self, parent = None):
24
             QWidget.__init__(self, parent)
             self.canvas = MplCanvas()
25
26
             self.vbl = QVBoxLayout()
27
             self.vbl.addWidget(self.canvas)
28
             self.navbar = NavigationToolbar(self.canvas, self)
29
             self.vbl.addWidget(self.navbar)
30
             self.setLayout(self.vbl)
```

D.5 Código Fonte do Programa Principal

_ JAFOSSMS.py _

```
1
    #!/usr/bin/env python
 2
    # -*- coding: utf-8 -*-
 3
    from __future__ import division
 \mathbf{4}
    from decimal import Decimal, Context
 \mathbf{5}
    from numpy import abs, append, array, asarray, concatenate, exp, linspace, log, random, sqrt
 6
    from PySide.QtCore import QFile, QFileInfo, QRegExp, Qt, QTextStream, SLOT
 7
    from PySide.QtGui import (qApp, QApplication, QCheckBox, QDialog, QDialogButtonBox, QFileDialog,
 8
        QGridLayout, QRegExpValidator, QTextBlockFormat, QTextCharFormat, QTextDocument,
9
         QTextTableFormat)
10
    from scipy.optimize import curve_fit, fsolve
11
    import matplotlib.lines as mlines
12
    import matplotlib.patches as mpatches
13
    import matplotlib.ticker as tkr
14
    import re
15
    import scipy.stats as stats
16
    import sys
17
    import ui_Form
18
    ALIGN = { 'L': Qt.AlignLeft, 'C': Qt.AlignCenter, 'R': Qt.AlignRight }
19
20
    DP, COLORS = ',', 'rygcbm'
21
    MARKERS = [['o', 8], ['*', 10], ['s', 7], ['d', 9], ['^', 8], ['p', 9], ['v', 8]]
    REG_EXP = '(([+-]?((\d*['+DP+']?\d+)|(\d+['+DP+']?\d*)))\s)*'
22
    MODE, TYPES = [u'Regressão', u'Predição'], ['str', 'unicode', 'int', 'float']
23
24
    UNITS_T = ['K', u'°C', u'°R', u'°F']
    M_H2O = 0.018015  # kg·mol^(-1) - LIDE e HAYNES, 2009
25
26
    M_MEG = 0.062068 # kg·mol^(-1) - LIDE e HAYNES, 2009
27
    R = 8.314472 # J·K^(-1)·mol^(-1) - LIDE e HAYNES, 2009
28
29
    multAppend = lambda *_: map(lambda __: __[0].append(__[1]), zip(_[::2],_[1::2]))
30
    multToArray = lambda *_: map(array, _)
31
    strTo = lambda s, t: s if t == 'str' else eval(t)(s.replace(DP, '.'))
32
    map_strTo = lambda l, t: map(strTo, l, [t]*len(l))
33
    toStr = lambda x: unicode(x).replace('.', DP)
34
    decimalPlaces0 = lambda x: -Decimal(str(x)).as_tuple().exponent
35
    decimalPlaces = lambda x: decimalPlaces0(x) if decimalPlaces0(x) > 0 else 1
36
    setDecimalPlaces = lambda x, N: toStr(Decimal(x).quantize(Decimal(10)**-N))
37
    setDecimalPlacesPercent = lambda x, N: setDecimalPlaces(x*100, N)+'%'
    significantFigures = lambda x, N: Context(prec=N).create_decimal(x)
38
39
    setSignificantFigures = lambda x, N: toStr(setDecimalPlaces(significantFigures(x, N),
40
         decimalPlaces(significantFigures(x, N))))
```

```
41
     setSignificantFiguresPercent = lambda x, N: setSignificantFigures(x*100, N)+'%'
42
43
     def f_gen(s):
         i, n = 0, len(s)
44
45
         while True:
46
             yield s[i%n]
47
              i += 1
48
49
     def convertT(T, i):
50
         # Converte temperaturas de K para °C/°R/°F ou vice-versa
         # i = 0/4 => Não converte
51
52
         # i = 1/2/3 => Kelvins para graus Celsius/Rankine/Fahrenheit
 53
         # i = 5/6/7 => graus Celsius/Rankine/Fahrenheit para kelvins
54
         return [T, T-273.15, T*1.8, T*1.8 - 459.67, T, T+273.15, T/1.8, (T+459.67) / 1.8][i]
55
56
57
     class htlmlTags:
58
59
         def __init__(self):
60
              self.b = lambda s: '<b>'+s+'</b>'
              self.i = lambda s: '<i>'+s+'</i>'
61
              self.u = lambda s: '<u>'+s+'</u>'
62
63
              self.bi = lambda s: self.b(self.i(s))
64
              self.bu = lambda s: self.b(self.u(s))
65
              self.sub = lambda s: '<sub>'+s+'</sub>'
66
              self.sup = lambda s: '<sup>'+s+'</sup>'
67
              self.center = lambda s: '<center>'+s+'</center>'
 68
              self.div = lambda s, bc, c: '<div style="background-color:'+bc+';color:'+c+';">'+s+'</div>'
69
              self.title = lambda s, bc, c: self.center(self.div(self.bu(s), bc, c))+'<br>'
70
71
72
     class chooseIsotherms(QDialog):
73
74
         def __init__(self, lineEdit, i_T, i_mode):
 75
              super(chooseIsotherms, self).__init__()
 76
              self.setWindowTitle('Escolha as isotermas para a '+MODE[i_mode])
 77
              self.lineEdit = lineEdit
78
              T = list(convertT([T_reg, T_prd][i_mode], i_T))
79
              T_set = set(map_strTo(lineEdit.text().split(), 'float'))
80
              T_sorted = sorted(set(T) | T_set)
81
              layout, self.checkBoxs, ncols = QGridLayout(), [], 3
82
             for col in range(ncols):
83
                 row = 0
84
                  for T_ in T_sorted[col::ncols]:
85
                      n = T.count(T_)
                      checkBox = QCheckBox((toStr(T_)+' '+UNITS_T[i_T]+' ('+(str(n) if n > 0 else
86
87
                          'nenhum')+[' ponto experimental', ' pontos experimentais'][n > 1]+')'))
88
                      checkBox.setChecked(T_ in T_set)
89
                      self.checkBoxs.append(checkBox)
90
                      layout.addWidget(checkBox, row, col)
91
                      row += 1
92
              buttonBox = QDialogButtonBox(QDialogButtonBox.Cancel | QDialogButtonBox.Ok)
93
              layout.addWidget(buttonBox, row+1, 0, 1, ncols)
94
              buttonBox.accepted.connect(self.accept)
95
              buttonBox.rejected.connect(self.reject)
96
              self.setLayout(layout)
97
98
         def accept(self):
              self.lineEdit.setText(' '.join([checkBox.text().split()[0] for checkBox in self.checkBoxs
99
100
                  if checkBox.isChecked()]))
```

```
101
             QDialog.accept(self)
102
103
         def reject(self):
104
             QDialog.reject(self)
105
106
107
     class JAFOSSMS(QDialog, ui_Form.Ui_Form):
108
109
         def init (self):
             super(JAFOSSMS, self).__init__()
110
111
             self.setupUi(self)
112
              global canvas, h, comboBoxs, sliders
113
              canvas, h = self.mplWidget_Graphic.canvas, htlmlTags()
114
             comboBoxs = [self.comboBox_Plot1_x_T, self.comboBox_Plot1_y_C, self.comboBox_Plot1_y_solv,
                  self.comboBox_Isotherms_mode, self.comboBox_Isotherms_T, self.comboBox_Plot2_x_C_SF,
115
                  self.comboBox_Plot2_x_solv, self.comboBox_Plot2_y_C, self.comboBox_Plot3_x_C_SF,
116
117
                 self.comboBox_Plot3_x_solv, self.comboBox_Plot3_y_F, self.comboBox_Plot4_x_C_SF,
118
                  self.comboBox_Plot4_x_solv, self.comboBox_Plot4_y_F_E]
119
             sliders = [self.horizontalSlider_GeneralReport, self.horizontalSlider_Statistics,
120
                 self.horizontalSlider_Graphic_Legend, self.horizontalSlider_Graphic_AxesTicks,
121
                  self.horizontalSlider_Graphic_AxesLabels]
122
             for slider, min_, max_ in zip(sliders, [6, 6, 8, 8, 10], [18, 18, 20, 20, 22]):
123
                  slider.setMinimum(min_)
124
                  slider.setMaximum(max )
125
             self.horizontalSlider GeneralReport.valueChanged.connect(lambda: self.changeSize(0))
126
             self.horizontalSlider_Statistics.valueChanged.connect(lambda: self.changeSize(1))
127
             self.horizontalSlider_Graphic_Legend.valueChanged.connect(lambda: self.changeSize(2))
128
             self.horizontalSlider_Graphic_AxesTicks.valueChanged.connect(lambda: self.changeSize(3))
129
             self.horizontalSlider_Graphic_AxesLabels.valueChanged.connect(lambda: self.changeSize(4))
130
             self.setAttribute(Qt.WA_DeleteOnClose)
131
             self.setWindowFlags(Qt.WindowMinMaxButtonsHint)Qt.WindowCloseButtonHint)
132
             self.initializeAll()
133
             self.tableformat = QTextTableFormat()
134
              self.tableformat.setCellPadding(2)
135
             self.tableformat.setCellSpacing(1)
136
             self.headerformat = QTextCharFormat()
137
             self.brush = self.headerformat.background()
138
             self.brush.setColor(Qt.lightGray)
139
             self.brush.setStyle(Qt.SolidPattern)
140
             self.headerformat.setBackground(self.brush)
141
             self.headerformat.setVerticalAlignment(QTextCharFormat.AlignMiddle)
142
             self.blockFormat = QTextBlockFormat()
143
             self.blockFormat.setRightMargin(10)
144
             self.blockFormat.setLeftMargin(10)
145
             self.textDocument_GeneralReport = QTextDocument()
146
             self.textDocument_Statistics = QTextDocument()
147
             self.textEdit GeneralReport.setDocument(self.textDocument GeneralReport)
148
             self.textEdit_GeneralReport.setFont('Courier')
149
             self.textEdit_Statistics.setDocument(self.textDocument_Statistics)
150
             self.textEdit_Statistics.setFont('Courier')
151
             self.checkBox_Graphic_Legend.stateChanged.connect(lambda: self.changeSize(2))
152
             self.checkBox_Graphic_NavigationToolbar.stateChanged.connect(self.showNavigationToolbar)
153
             for comboBox in comboBoxs:
154
                  comboBox.currentIndexChanged.connect(self.clearGraphicsAndStatistics)
155
             self.comboBox_Isotherms_mode.currentIndexChanged.connect(self.clearIsotherms)
              self.comboBox_Isotherms_T.currentIndexChanged[int].connect(self.validateIsotherms)
156
157
             validator = QRegExpValidator(QRegExp(REG_EXP), self.lineEdit_Isotherms)
158
             self.lineEdit Datafile.returnPressed.connect(self.existDatafile)
159
             self.lineEdit_Isotherms.lostFocus.connect(lambda: self.validateIsotherms(last_i_T))
160
             self.lineEdit_Isotherms.setValidator(validator)
```

```
161
              self.pushButton_Datafile_Browse.clicked.connect(self.browse)
162
              self.pushButton_Exit.clicked.connect(qApp, SLOT("quit()"))
163
              self.pushButton_Isotherms_Choose.clicked.connect(self.chooseIsotherms)
164
              self.pushButton_Plot1.clicked.connect(lambda: self.f_plot(0))
165
              self.pushButton_Plot2.clicked.connect(lambda: self.f_plot(1))
166
              self.pushButton_Plot3.clicked.connect(lambda: self.f_plot(2))
167
              self.pushButton_Plot4.clicked.connect(lambda: self.f_plot(3))
168
              self.pushButton_Run.clicked.connect(self.runCalculations)
169
              self.pushButton_SaveGeneralReport.clicked.connect(self.saveGeneralReport)
170
              self.pushButton_SaveStatistics.clicked.connect(self.saveStatistics)
171
172
          def initializeAll(self):
173
              global handles, labels, last_i_T
174
              handles, labels, last_i_T = [], [], 0
175
              self.textEdit GeneralReport.clear()
176
              for comboBox in comboBoxs:
177
                  comboBox.setCurrentIndex(0)
178
              self.lineEdit_Isotherms.clear()
179
              self.groupBox_Plots.setEnabled(False)
180
              self.checkBox_Graphic_NavigationToolbar.setChecked(True)
181
              self.checkBox_Graphic_Legend.setChecked(True)
182
              for slider, size in zip(sliders, [12, 8, 12, 14, 16]):
183
                  slider.setValue(size)
184
              self.label_Slider_GeneralReport,
              self.pushButton_Run.setEnabled(False)
185
186
              self.tabWidget.setEnabled(False)
187
              self.tabWidget.setCurrentIndex(0)
188
              self.tabWidget.setTabEnabled(3, False)
189
190
          def clearIsotherms(self):
191
              self.lineEdit_Isotherms.clear()
192
193
          def chooseIsotherms(self):
194
              dialog = chooseIsotherms(self.lineEdit_Isotherms, last_i_T,
195
                  self.comboBox_Isotherms_mode.currentIndex())
196
              dialog.exec ()
197
              self.validateIsotherms(last_i_T)
198
199
          def validateIsotherms(self, i_T):
200
              global last_i_T
201
              T = array(sorted(set(map_strTo(self.lineEdit_Isotherms.text().split(), 'float'))))
202
              T in kelvins = convertT(T, 4+last i T)
203
              T_in_kelvins = T_in_kelvins[T_in_kelvins >= 0]
204
              if i_T is None:
205
                  return T_in_kelvins
              self.lineEdit_Isotherms.setText(' '.join(map(toStr, convertT(T_in_kelvins, i_T))))
206
207
              self.groupBox_Plots.setEnabled(self.lineEdit_Isotherms.text() != '')
              self.clearGraphicsAndStatistics()
208
209
              last_i_T = i_T
210
211
          def changeSize(self, i):
212
              if i in [0, 1]:
213
                  te = [self.textEdit_GeneralReport, self.textEdit_Statistics][i]
214
                  label = [self.label_Slider_GeneralReport, self.label_Slider_Statistics][i]
215
                  slider = [self.horizontalSlider_GeneralReport, self.horizontalSlider_Statistics][i]
216
                  cursor = te.textCursor()
217
                  oldPosition = cursor.position()
218
                  te.selectAll()
219
                  size = slider.value()
220
                  te.setFontPointSize(size)
```

221		label.setNum(size)								
222		cursor.setPosition(oldPosition)								
223		te.setTextCursor(cursor)								
224		else:								
225		<pre>size = self.horizontalSlider_Graphic_Legend.value()</pre>								
226		<pre>leg = canvas.ax.legend(handles, labels, loc=0, fontsize=size, fancybox=True,</pre>								
227		<pre>shadow=True)</pre>								
228		<pre>leg.draggable(state=True, use_blit=True)</pre>								
229		<pre>vis = self.checkBox_Graphic_Legend.isChecked()</pre>								
230		<pre>canvas.ax.get_legend().set_visible(vis)</pre>								
231		<pre>self.horizontalSlider_Graphic_Legend.setEnabled(vis)</pre>								
232		self.label_Slider_Graphic_Legend.setEnabled(vis)								
233		self.label Slider Graphic Legend.setNum(size)								
234		f tkr x = lambda x, pos: setDecimalPlaces(x, max(map(decimalPlaces,								
235		canvas.ax.xaxis.get ticklocs())))								
236		f tkr y = lambda y, pos: setDecimalPlaces(y, max(map(decimalPlaces)))								
237		canvas.ax.vaxis.get_ticklocs())))								
238		canvas.ax.xaxis.set major formatter(tkr.FuncFormatter(f tkr x))								
239		canvas av vavis set major formatter(tkr FuncFormatter(f tkr v))								
200		size = self horizontalSlider Granhic AvesTicks value()								
240		canvas av tick narams(avic='hoth' which='maior' labalsize=size)								
241		calt label Slider (raphic AreaTicks actNum(cize)								
242		seri.iaber_Silder_Graphic_Axesilcks.sethum(Size)								
243		size - Sell. nolizontalsilder_draphic_Akestabers.varde()								
244		canvas.ax.xaxis.iabel.set_size(size)								
240		canvas.ax.yaxis.iadei.set_size(size)								
240		sein. label_Silder_Graphic_AxesLabels.setNum(size)								
241		canvas.draw()								
248										
249	dei	showNavigationToolbar(self):								
250		11 self.checkBox_Graphic_Navigationloolbar.isChecked():								
251		self.mplWidget_Graphic.navbar.show()								
252		else:								
253		self.mplWidget_Graphic.navbar.hide()								
254										
255	def	clearGraphicsAndStatistics(self):								
256		self.tabWidget.setTabEnabled(3, False)								
257										
258	def	existDatafile(self):								
259		<pre>if QFile.exists(self.lineEdit_Datafile.text()):</pre>								
260		<pre>self.initializeAll()</pre>								
261		<pre>self.pushButton_Run.setEnabled(True)</pre>								
262										
263	def	browse(self):								
264		fileName = QFileDialog.getOpenFileName(self, 'Procurando Arquivo com Dados de Entrada',								
265		'.', 'Dados de Entrada(*.in);;Todos os Arquivos (*.*)')[0]								
266		if fileName:								
267		<pre>self.lineEdit_Datafile.setText(fileName)</pre>								
268		<pre>self.initializeAll()</pre>								
269		<pre>self.pushButton_Run.setEnabled(True)</pre>								
270										
271	def	<pre>saveGeneralReport(self):</pre>								
272		fileName = QFileDialog.getSaveFileName(self, u'Gravando Relatório Geral', '.',								
273		'Arquivo HTML (*.html);;Todos os Arquivos (*.*)')[0]								
274		if fileName:								
275		<pre>data = QFile(fileName)</pre>								
276		if data.open(QFile.WriteOnly QFile.Text):								
277		<pre>QTextStream(data) << self.textDocument_GeneralReport.toHtml(encoding='utf-8')</pre>								
278										
279	def	<pre>saveStatistics(self):</pre>								
280		fileName = QFileDialog.getSaveFileName(self, u'Gravando Estatísticas', '.',								
1										

```
281
                   'Arquivo HTML (*.html);;Todos os Arquivos (*.*)')[0]
282
              if fileName:
283
                  data = QFile(fileName)
284
                  if data.open(QFile.WriteOnly | QFile.Text):
285
                      QTextStream(data) << self.textDocument_Statistics.toHtml(encoding='utf-8')</pre>
286
287
          def linearMixingRule(self, property_1, property_2, fraction_2):
288
              # Regra de Mistura Binária Linear com a Fração
289
              fraction_1 = 1 - fraction_2
290
              return fraction_1*property_1 + fraction_2*property_2
291
292
          def excessProperty(self, property_real, property_ideal):
293
              # Calcula uma Propriedade de Excesso
294
              return property_real-property_ideal
295
296
          def rho_and_epsilon_r_of_pures(self, T, i=0):
297
              # Calcula as Densidades Absolutas e as Constantes Dielétricas
298
              # dos solventes puros
299
              # GREEN e PERRY, 2007
300
              tau = 1 - T/647.096
301
              rho_H2O = (17863 + 58606*tau**.35 - 95396*tau**(2/3) + 213890*tau - 141260*tau**(4/3)
302
                  ) * M H2O
303
              rho_MEG = (1315 / (.25125**(1 + (1 - T/720)**.21868))) * M_MEG
304
              if i:
305
                  return rho H2O, rho MEG
306
              # ÅKERLÖF, 1932
307
              epsilon_r_H2O = 10**(1.9051 - .00205*(T-293.15))
308
              epsilon_r_MEG = 10**(1.5872 - .00224*(T-293.15))
309
              return rho_H2O, rho_MEG, epsilon_r_H2O, epsilon_r_MEG
310
311
          def rho_and_epsilon_r_of_mixing(self, rho_H2O, rho_MEG, epsilon_r_H2O, epsilon_r_MEG,
312
                  x_MEG_SF, T, i=0):
313
              # Calcula a Densidade Absoluta e a Constante Dielétrica da
314
              # mistura de solventes
315
              x_H20_SF = 1-x_MEG_SF
316
              w_MEG_SF = x_MEG_SF*M_MEG / (x_H20_SF*M_H20 + x_MEG_SF*M_MEG)
317
              # Regra de Mistura
318
              rho_H20_MEG = 1/self.linearMixingRule(1/rho_H20, 1/rho_MEG, w_MEG_SF)
319
              if i:
320
                  return rho_H2O_MEG
321
              # JOUYBAN, SOLTANPOUR e CHAN, 2004
322
              epsilon_r_H20_MEG = exp(x_H20_SF*log(epsilon_r_H20) + x_MEG_SF*log(epsilon_r_MEG) +
323
                  x_H20_SF*x_MEG_SF/T * (153.6 + 57.3*(x_H20_SF-x_MEG_SF)))
324
              return rho_H20_MEG, epsilon_r_H20_MEG
325
326
          def A_phi_H2O(self, T):
              # Calcula a Constante de Debye-Hückel para a água
327
328
              # => CHEN, BRITT, et al., 1982
329
              return (-61.44534*exp((T-273.15)/273.15) + 2.864468*exp(2*(T-273.15)/273.15) + 183.5379*
330
                  \log(T/273.15) - .6820223*(T-273.15) + .0007875695*(T**2 - 273.15**2) +
331
                  58.95788*(273.15/T))
332
333
          def A_phi_solv(self, A_phi_H20, rho_H20, epsilon_r_H20, rho_solv, epsilon_r_solv):
334
              # Calcula Constante de Debye-Hückel para outros solventes
335
              return ((rho_solv/rho_H20)**0.5 * (epsilon_r_H20/epsilon_r_solv)**1.5 * A_phi_H20)
336
337
          def Pitzer_parameters(self, T):
338
              # Calcula os parâmetros do Modelo de Pitzer em H2O:
339
              # => beta0_MX_H20, beta1_MX_H20 e C_phi_MX_H20
              Tr = 298.15 \# K
340
```

```
341
              if MX == 'NaCl': # SILVESTER e PITZER, 1977
342
                  q = array([[.0765, -777.03, -4.4706, .008946, -3.3158e-6], [.2664, 0, 0, 6.1608e-5,
                      1.0715e-6], [.00127, 33.317, 0.09421, -4.655e-5, 0]])
343
                  return (q[i,0] + q[i,1]*(1/T - 1/Tr) + q[i,2]*log(T/Tr) + q[i,3]*(T-Tr) +
344
345
                      q[i,4]*(T**2 - Tr**2) for i in range(3))
346
              elif MX == 'KCl': # ARCHER, 1999
347
                  b = array([[.413229483398493, -.0870121476114027, .101413736179231, -.0199822538522801,
                      -.0998120581680816, 0], [.206691413598171, .102544606022162, 0, 0, 0,
348
349
                      -.00188349608000903], [-.00133515934994478, 0, 0, .00234117693834228,
350
                      -.00075896583546707, 0]])
351
                  return (b[i,0] + 1e-2*b[i,1]*(T-Tr) + 1e-5*b[i,2]*(T-Tr)**2 + 1e2*b[i,3]/(T-225) +
352
                      1e3*b[i,4]/T + 1e6*b[i,5]/(T-225)**3 for i in range(3))
353
354
          def Pitzer_parameters_in_mixtures(self, beta0_MX_H2O, beta1_MX_H2O, beta1_MX_MEG,
355
                  epsilon_r_H2O, epsilon_r_MEG, epsilon_r_H2O_MEG, C_phi_MX_H2O):
356
              # Calcula os parâmetros do Modelo de Pitzer em mistura H2O-MEG:
              # => beta0_MX_H20_MEG, beta1_MX_H20_MEG e C_phi_MX_H20_MEG
357
358
              # => LORIMER, 1993
359
              A = log(beta1_MX_H2O/beta1_MX_MEG) / log(epsilon_r_H2O/epsilon_r_MEG)
360
              B = \log(beta1_MX_H20) - A*\log(epsilon_r_H20)
361
              return beta0_MX_H2O, exp(A*log(epsilon_r_H2O_MEG) + B), C_phi_MX_H2O
362
363
          def ln_gamma_MX(self, b_MX, A_phi, beta0_MX, beta1_MX, C_phi_MX):
364
              # Calcula o Coeficiente de Atividade pelo Modelo de Pitzer
365
              # => PITZER, 1973
366
              alpha, b_, b_M, b_X = 2, 1.2, nu_M*b_MX, nu_X*b_MX
367
              I_b = (b_{X*z_{X*2}} + b_{X*z_{X*2}}) / 2
368
              sqrt_I_b = sqrt(I_b)
369
              f_gamma_MX = -A_phi*(2/b_*log(1 + b_*sqrt_I_b) + sqrt_I_b/(1 + b_*sqrt_I_b))
370
              B_gamma_MX = 2*(beta0_MX + beta1_MX*(1 - (1 + alpha*sqrt_I_b - .5*alpha**2*I_b)*exp(-alpha*
371
                  sqrt_I_b)) / (alpha**2*I_b))
              C_gamma_MX = 1.5*C_phi_MX
372
373
              return abs(z_M*z_X)*f_gamma_MX + 2*b_MX*nu_M*nu_X/nu*(B_gamma_MX + b_MX*sqrt(nu_M*nu_X)*
374
                  C gamma MX)
375
376
          def ln_gamma_MX_in_MEG(self, ln_gamma_MX_in_H2O, b_MX_in_H2O, b_MX_in_MEG, T):
377
              # Calcula o Coeficiente de Atividade do sal em MEG
378
              # => LORIMER, 1993
379
              return (ln_gamma_MX_in_H2O + log(b_MX_in_H2O/b_MX_in_MEG) - Delta_tr_GO_H2O_to_MEG /
380
                  (nu*R*T))
381
          def b_MX_in_H20_MEG(self, i, C_MX, C_H20_MEG=None):
382
383
              # Normaliza para Molalidade do Sal na mistura de solventes
384
              # i = 0 => m_MX (g), m_H20_MEG (g)
385
              if i: # w_MX_in_H20_MEG_MX
386
                  C_H20_MEG = 1-C_MX
387
              return C_MX/M_MX/C_H2O_MEG
388
389
          def x_MEG_SF(self, i, C_H2O, C_MEG=None):
390
              # Normaliza para Fração Molar de MEG Livre de Sal
391
              # i = 0 \Rightarrow m_H20 (g), m_MEG (g)
392
              if i:
393
                  if i == 1: # w_H20_SF_in_H20_MEG
394
                      C MEG = 1-C H20
395
                  else: # w_MEG_SF_in_H20_MEG
396
                      C_{H20}, C_{MEG} = 1-C_{H20}, C_{H20}
397
              return C_MEG/M_MEG / (C_H2O/M_H2O + C_MEG/M_MEG)
398
399
          def convertC(self, b_MX_in_H20_MEG, x_MEG_SF, T, i):
              if i:
400
```

```
401
                  if i == 1: # Converte Molalidade para Molaridade
402
                      rho_H20, rho_MEG = self.rho_and_epsilon_r_of_pures(T, 1)
403
                      rho_H20_MEG = self.rho_and_epsilon_r_of_mixing(rho_H20, rho_MEG, None, None,
404
                              x MEG SF. T. 1)
405
                      return b_MX_in_H20_MEG*rho_H20_MEG/1000
406
                  elif i == 2: # Converte Molalidade para Fração Molar
407
                      x H2O SF = 1-x MEG SF
                      return b_MX_in_H20_MEG / (1/(x_H20_SF*M_H20 + x_MEG_SF*M_MEG) +
408
409
                          b_MX_in_H20_MEG)
410
                  else: # Converte Molalidade para Fração Mássica
                      return b_MX_in_H20_MEG / (1/M_MX + b_MX_in_H20_MEG)
411
412
              return b_MX_in_H20_MEG # Não converte
413
414
          def convertC_SF(self, x_MEG_SF, i):
              x_H20_SF = 1-x_MEG_SF
415
416
              if i: # Converte para Fração Mássica Livre de Sal
                  return x_MEG_SF / (x_H20_SF*M_H20/M_MEG + x_MEG_SF)
417
418
              return x_MEG_SF # Não converte
419
420
          def printText(self, text, i=0):
421
              [self.textEdit_GeneralReport, self.textEdit_Statistics][i].textCursor().insertHtml(text)
422
423
          def printVars(self, *args):
424
              n = len(args)
425
              r = n\%3
426
              i = int(r != 0)*int(args[-1] != 0)
427
              for name, value, unit in zip(*[args[_:-3:3] for _ in range(3)]):
428
                  text = toStr(value) if type(value) == float else unicode(value)
429
                  self.printText(h.b(name)+' = '+text+(' '+unit)*bool(unit)+'<br>', i)
430
              name, value, unit = args[-3-r:n-r]
              text = toStr(value) if type(value) == float else unicode(value)
431
              self.printText(h.b(name)+' = '+text+(' '+unit)*bool(unit), i)
432
433
434
          def createTable(self, nrows, ncols, nHeaderLines=1, mergedLines=[], brushedLines=[], i=0):
435
              self.tableformat.setHeaderRowCount(nHeaderLines)
436
              table = [self.textEdit_GeneralReport, self.textEdit_Statistics][i].textCursor().\
437
                  insertTable(nrows+1, ncols, self.tableformat)
438
              for (r, c, nr, nc) in mergedLines:
439
                  table.mergeCells(r, c, nr, nc)
440
              if brushedLines:
441
                  for (r, c) in brushedLines:
442
                      self.writeCell(table, r, c, '', format_=self.headerformat)
443
              else:
444
                  for r in range(nHeaderLines):
445
                      for c in range(ncols):
446
                          self.writeCell(table, r, c, '', format_=self.headerformat)
447
              return table
448
449
          def writeCell(self, table, row, col, text, align='C', format_=None):
450
              cell = table.cellAt(row, col)
451
              if format :
452
                  cell.setFormat(format_)
453
              self.blockFormat.setAlignment(ALIGN[align])
454
              cell.firstCursorPosition().setBlockFormat(self.blockFormat)
455
              cellCursor = cell.firstCursorPosition()
456
              cellCursor.insertHtml(text)
457
458
          def writeLineInTable(self, table, row, col, line, align_orientation='Rv'):
              align_, orientation = align_orientation[0], align_orientation[1]
459
460
              for i, text in enumerate(line):
```

```
461
                  if orientation == 'v':
462
                      self.writeCell(table, row+i, col, text, align_)
463
                  else:
464
                      self.writeCell(table, row, col+i, text, align_)
465
466
          def printVectors(self, *args):
467
              n = len(args)-1
468
              r = n\%3
469
              i = int(r != 0)*int(args[-1] != 0)
470
              formats = args[0]
471
              names, vectors, units = (args[_+1::3] for _ in range(3))
472
              nrows, ncols = len(vectors[0]), len(vectors)
473
              table = self.createTable(nrows, ncols, i=i)
474
              for col in range(ncols):
475
                  text = '<b>'+names[col]+(' ('+units[col]+')')*bool(units[col])+'</b>'
476
                  self.writeCell(table, 0, col, text)
477
                  vector, format_ = vectors[col], formats[col]
478
                  align, type_, N = format_[0], format_[1], int(format_[2:])
479
                  # 'format_[0]':
480
                  # 'L' => esquerda
                  # 'C' => centro
481
                  # 'R' => direita
482
483
                  # 'format_[1]':
484
                  # 'f' => 'float'
485
                  # 'i' => 'int'
                  # 's' => 'str'
486
487
                  # 'format_[2:]':
488
                  # < 0 => 'float' arredondado ('-N' casas decimais);
489
                     0 => 'float' não arrendondado;
                  # > 0 => 'float' arredondado ('N' dígitos significativos)
490
491
                  if type_ in ['f', '%']:
                      if N < 0:
492
493
                          N = -N
494
                      elif N == 0:
495
                          N = max(map(decimalPlaces, vector))
496
                      elif N > 0:
497
                          N = max(map(lambda x: decimalPlaces(strTo(setSignificantFigures(x, N)),
498
                               'float'), vector))
499
                      for row, value in enumerate(vector):
500
                          if type_ == 'f':
501
                              self.writeCell(table, row+1, col, setDecimalPlaces(value, N), align)
502
                          else:
503
                              self.writeCell(table, row+1, col, setDecimalPlacesPercent(value, N), align)
504
                  else:
505
                      for row, value in enumerate(vector):
506
                          self.writeCell(table, row+1, col, str(value), align)
507
508
          def readDataFile(self, fileName):
509
              f = QFile(fileName)
510
              if f.open(QFile.ReadOnly | QFile.Truncate | QFile.Text):
511
                  inStream = QTextStream(f)
512
                  inStream.setCodec('utf-8')
513
                  lines = inStream.readAll().splitlines()
514
              f.close()
515
              values, vectors = [], []
516
              for line in lines:
517
                  args = [arg.strip() for arg in line.split(';')]
                  type_ = args[0]
518
519
                  if type_:
520
                      for vector in vectors:
```

```
521
                          if vector[0] in TYPES:
522
                              values.append(map_strTo(vector[3:], vector[0]))
523
                              if vector[2]:
524
                                  values.append(vector[2])
525
                      vectors = []
526
                      if type_ in TYPES:
527
                          values.append(strTo(args[2], type_))
528
                          if args[3:4]:
                              values.append(args[3])
529
                      elif type_ == 'vectors':
530
                          vectors.extend([[i] for i in args[1:]])
531
532
                  else:
533
                      for i, vector in enumerate(args[1:]):
534
                          vectors[i].append(vector)
535
              for vector in vectors:
536
                  if vector[0] in TYPES:
537
                      values.append(map_strTo(vector[3:], vector[0]))
538
                      if vector[2]:
539
                          values.append(vector[2])
540
              return values
541
542
          def readDataset(self):
543
              global ions, MX, z_M, z_X, nu_M, nu_X, M_MX, Delta_tr_GO_H2O_to_MEG
544
              (ions, z_M, z_X, nu_M, nu_X, M_MX, units_M_MX, Delta_tr_G0_H20_to_MEG,
545
                  units_Delta_tr_G0_H20_to_MEG, data_filenames) = \
546
                      self.readDataFile(self.lineEdit_Datafile.text())
547
              f = lambda s, nu: [s, '('+s+')'][bool(re.search(r'\d', s) and nu > 1)]+str(nu)*(nu > 1)
548
              MX = f(ions[0], nu_M)+f(ions[1], nu_X)
549
              global nu
550
              nu, fileInfo = nu_M+nu_X, QFileInfo(self.lineEdit_Datafile.text())
              self.printText(h.b('Arguivo com Dados de Entrada')+': '+fileInfo.fileName()+'<br>')
551
              self.printVars('MX', MX, '', h.i('z')+h.sub(ions[0]), z_M, '', h.i('z')+h.sub(ions[1]),
552
                  z_X, '', u'ν'+h.sub(ions[0]), nu_M, '', u'ν'+h.sub(ions[1]), nu_X, '', h.i('M')+
553
554
                  h.sub(MX), M_MX, units_M_MX, u'\delta'+h.sub('tr')+h.i('G')+h.sup('0')+
555
                  h.sub('H2O para MEG'), Delta_tr_GO_H2O_to_MEG, units_Delta_tr_GO_H2O_to_MEG)
556
              global BibRef
557
              global iBibRef_reg, x_MEG_SF_reg, b_MX_in_H20_MEG_reg, T_reg
              global iBibRef_prd, x_MEG_SF_prd, b_MX_in_H20_MEG_prd, T_prd
558
559
              BibRef, iBibRef_reg, iBibRef_prd = [], 0, [], []
560
              (x_MEG_SF_reg, x_MEG_SF_prd, b_MX_in_H20_MEG_reg, b_MX_in_H20_MEG_prd, T_reg,
561
                  T_prd = [], [], [], [], [], []
562
              for data_filename in data_filenames:
563
                  self.printText('<br>')
564
                  data = self.readDataFile(fileInfo.path()+'/'+data_filename)
565
                  BibRef.append(data[0])
566
                  self.printText('<br>'+h.b('Arquivo de Dados')+': '+data_filename+'<br>'+h.b(
567
                      u'Referência')+': '+BibRef[-1])
568
                  dataType = data[1]
569
                  data = map(lambda _: asarray(_) if type(_) != str and type(_) != unicode else _, \
570
                      data[2:])
571
                  if dataType == 1:
572
                      # w_MEG_SF, m_H20_MEG (g), m_MX (g), T (°C)
573
                      w_MEG_SF, m_H20_MEG, units_m_H20_MEG, m_MX, units_m_MX, T, units_T, use = data
                      self.printVectors(['Rf0']*4+['Ls0'], h.i('w')+"'"+h.sub('MEG'), w_MEG_SF, '',
574
575
                          h.i('m')+h.sub('H20+MEG'), m_H20_MEG, units_m_H20_MEG, h.i('m')+h.sub(MX),
                          m_MX, units_m_MX, h.i('T'), T, units_T, 'use', use, '')
576
577
                      x_MEG_SF = self.x_MEG_SF(2, w_MEG_SF)
                      b_MX_in_H20_MEG = self.b_MX_in_H20_MEG(0, m_MX, m_H20_MEG)
578
579
                      T += 273.15
580
                  elif dataType == 2:
```

581	<pre># w_MEG_SF, w_MX, T (°C)</pre>
582	<pre>w_MEG_SF, w_MX, T, units_T, use = data</pre>
583	<pre>self.printVectors(['Rf0']*3+['Ls0'], h.i('w')+"'+h.sub('MEG'), w_MEG_SF, '',</pre>
584	h.i('w')+h.sub(MX), w_MX, '', h.i('T'), T, units_T, 'use', use, '')
585	<pre>x_MEG_SF = self.x_MEG_SF(2, w_MEG_SF)</pre>
586	b MX in H20 MEG = self.b MX in H20 MEG(1, w MX)
587	T += 273.15
588	elif dataType == 3:
589	= = = = = = = = = = = = = = = = = = =
590	$W_{m} = M_{m} = M_{m$
501	w_1 M, w_1 20, w_1 20, w_1 20, w_2 and w_1 20, w_1 and w_2 , w_1 and w_2 , w_2 and w_3
502	b cub(2H2O2) m H2O unite m H2O b i($2m^2$) th cub($2MEC^2$) m MEC unite m MEC
503	h: (2T) T units T (use ()
504	mEC = colf m MEC SE(0, m MOO, m MEC)
594	x_{MEG} Sr = Sell. x_{MEG} Sr(0, m_nz0, m_MEG)
595	D_MA_IN_HZU_MEG = SEII.D_MA_IN_HZU_MEG(I, W_MA)
596	T += 2/3.15
597	elif dataType == 4:
598	# w_H20_SF, w_MX, T (K)
599	w_H20_SF, w_MX, T, units_T, use = data
600	self.printVectors(['Rf0']*3+['Ls0'], h.i('w')+"'"+h.sub('H20'), w_H20_SF, '',
601	h.i('w')+h.sub(MX), w_MX, '', h.i('T'), T, units_T, 'use', use, '')
602	<pre>x_MEG_SF = self.x_MEG_SF(1, w_H20_SF)</pre>
603	<pre>b_MX_in_H20_MEG = self.b_MX_in_H20_MEG(1, w_MX)</pre>
604	elif dataType == 5:
605	# w_MEG_SF, w_MX, T (K)
606	<pre>w_MEG_SF, w_MX, T, units_T, use = data</pre>
607	<pre>self.printVectors(['Rf0']*3+['Ls0'], h.i('w')+"'+h.sub('MEG'), w_MEG_SF, '',</pre>
608	<pre>h.i('w')+h.sub(MX), w_MX, '', h.i('T'), T, units_T, 'use', use, '')</pre>
609	<pre>x_MEG_SF = self.x_MEG_SF(2, w_MEG_SF)</pre>
610	<pre>b_MX_in_H20_MEG = self.b_MX_in_H20_MEG(1, w_MX)</pre>
611	for x, b, t, u in zip(x_MEG_SF, b_MX_in_H2O_MEG, T, use):
612	<pre>if u == "REGR":</pre>
613	iBibRef_reg.append(iBibRef)
614	$x_MEG_SF_reg = append(x_MEG_SF_reg, x)$
615	b_MX_in_H20_MEG_reg = append(b_MX_in_H20_MEG_reg, b)
616	$T_reg = append(T_reg, t)$
617	elif u == "PRED":
618	iBibRef prd.append(iBibRef)
619	x MEG SF prd = append(x MEG SF prd, x)
620	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
621	T nrd = append(T nrd t)
622	$i_{\text{BihRef}} = 1$
623	
624	def nl regression(self f str f print y print y units Y y theta().
625	der miltegression(seri, i_sui, i_print, y_print, y_units, x, y, theta).
626	Sell.printlext(\D/ +n.center(n.dr/(n.b(n.d(u \D/AESOMO ESTATISTICO DOS MINIMOS
620	u'QUADRADUS NAU LINEAR(DI>')), 'lightgray', 'Diack'))+'(Di>')
627	<pre>seif.printlext(n.b(u'Funçao')+': '+y_print+' = '+i_print+' or>')</pre>
628	11 type(I_str) == tuple:
629	f, = f_str
630	else:
631	istr = 'lambda '+i_str
632	f = eval(fstr)
633	plusMinus = lambda a, b: (a-b, a+b)
634	<pre>theta_optimum, cov_theta_optimum = curve_fit(f, X, y, theta0)</pre>
635	N, P = X.shape[-1], theta_optimum.shape[-1]
636	<pre>y_optimum = f(X, *theta_optimum)</pre>
637	# Soma de Quadrados Total (TSS)
638	<pre>TSS_corrected, TSS_uncorrected = ((y-y.mean())**2).sum(), (y**2).sum()</pre>
639	# Soma de Quadrados dos Resíduos (RSS) ou Soma de Resíduos ao
640	# Quadrado (SSR) ou Soma de Erros de Predição ao Quadrado (SSE)

```
641
              RSS = ((y-y_optimum)**2).sum()
642
              # Soma de Quadrados Explicada (ESS)
643
              ESS_uncorrected = TSS_uncorrected-RSS
644
              # Soma de Quadrados Total Média
645
              MST_corrected = TSS_corrected/(N-1)
646
              # Soma de Quadrados dos Resíduos Média
647
              MSR = RSS/(N-P)
648
              # Soma de Quadrados Explicada Média
649
              MSE_uncorrected = ESS_uncorrected/P
650
              alpha = 0.05
              F_value_uncorrected = MSE_uncorrected/MSR
651
652
              Pr_F_value_uncorrected = stats.f.sf(F_value_uncorrected, N-P, P)
653
              s, R2, R2_bar = sqrt(MSR), 1-RSS/TSS_corrected, 1-MSR/MST_corrected
654
              ASE = sqrt(cov_theta_optimum.diagonal())
655
              corr_theta_optimum = (cov_theta_optimum/ASE).T/ASE
656
              t_value, t_critical = theta_optimum/ASE, stats.t.isf(alpha/2., N-P)
657
              Pr_tvalue = stats.t.sf(abs(t_value), N-P)*2.
658
              CI_theta = plusMinus(theta_optimum, t_critical*ASE)
659
              self.printVars(h.i(u'<br>>\alpha'), setSignificantFiguresPercent(alpha, 2), '')
660
              table = self.createTable(4, 6)
661
              self.writeLineInTable(table, 0, 0, map(h.b, ['Fonte', 'GL', 'Soma de Quadrados',
                  u'Quadrado Médio', h.i('F')+'-valor', 'Pr(>'+h.i('F')+')']), 'Ch' )
662
663
              self.writeLineInTable(table, 1, 0, [u'Regressão', u'Resíduo', 'Total',
664
                  'Total'+h.sub('Corrigido')], 'Cv')
665
              self.writeLineInTable(table, 1, 1, map(str, [P, N-P, N, N-1]))
666
              self.writeLineInTable(table, 1, 2, map(lambda x: setSignificantFigures(x, 5),
667
                  [ESS_uncorrected, RSS, TSS_uncorrected, TSS_corrected]))
668
              self.writeLineInTable(table, 1, 3, map(lambda x: setSignificantFigures(x, 5),
669
                  [MSE_uncorrected, MSR]))
670
              self.writeCell(table, 1, 4, setSignificantFigures(F_value_uncorrected, 5), 'R')
              self.writeCell(table, 1, 5, setDecimalPlaces(Pr_F_value_uncorrected, 5), 'R')
671
              self.printVars(h.i('s'), setSignificantFigures(s, 5), y_units, h.i('R')+h.sup('2'),
672
                  setDecimalPlaces(R2, 5), '', h.i('R')+h.sup('2')+h.sub('ajustado'),
673
674
                  setDecimalPlaces(R2_bar, 5), '', h.i('<br>t')+u'-crítico',
675
                  setSignificantFigures(t_critical, 5) , '')
676
              table = self.createTable(P+1, 7, 2, [(0, 0, 2, 1), (0, 1, 2, 1), (0, 2, 2, 1),
677
                  (0, 3, 2, 1), (0, 4, 2, 1), (0, 5, 1, 2)])
              self.writeLineInTable(table, 1, 0, map(h.b, [u'Parâmetro', 'Estimativa', u'Erro Padrão<br/>s/')
678
679
                  u'Assintótico', h.i('t')+'-valor', 'Pr(>|'+h.i('t')+'|)', 'Inferior', 'Superior']),
680
                  'Ch')
681
              self.writeCell(table, 0, 5, h.b(u'Intervalo de Confiança<br>Assintótico '+
682
                  setSignificantFigures((1-alpha)*100, 2)+'%'))
683
              self.writeLineInTable(table, 2, 0, map(h.b, [u'0+h.sub(str(i)) for i in range(P)] ), 'Cv')
684
              for r in range(P):
685
                  N1 = decimalPlaces(significantFigures(t_critical, 5))
686
                  N2 = decimalPlaces(significantFigures(theta_optimum[r], 5))
687
                  self.writeLineInTable(table, r+2, 1, [setDecimalPlaces(theta_optimum[r], N2),
688
                      setDecimalPlaces(ASE[r], N2), setDecimalPlaces(t_value[r], N1),
689
                      setDecimalPlaces(Pr_tvalue[r], 5), setDecimalPlaces(CI_theta[0][r], N2),
690
                      setDecimalPlaces(CI_theta[1][r], N2)], 'Rh')
691
              self.printText('<br><br>'+h.b(u'Matriz de Correlação Assintótica')+':')
692
              table = self.createTable(P, P+1, brushedLines=[(0, 0)])
693
              self.writeCell(table, 0, 0, h.b(u'Parâmetro'))
              self.writeLineInTable(table, 1, 0, map(h.b, [u'0'+h.sub(str(i)) for i in range(P)] ), 'Cv')
694
695
              self.writeLineInTable(table, 0, 1, map(h.b, [u'θ'+h.sub(str(i)) for i in range(P)] ), 'Ch')
696
              for r in range(P):
697
                  for c in range(P):
698
                      self.writeCell(table, r+1, c+1, setDecimalPlaces(corr_theta_optimum[r][c], 5), 'R')
699
              self.printText('<br>')
700
              self.calculateBasicStatistics(y_optimum, y, y_print, y_units)
```

701		return f, theta_optimum
702		
703	def	calculateBasicStatistics(self, ycalc, yexp, y_print, y_units, i=0):
704		# Desvio Absoluto Médio
705		AAD = abs(vexp-vcalc).mean()
706		# Desvio Absoluto Máximo
707		maxAD = max(abs(vexp-vcalc))
708		self printText($Y = Y + y$ print i)
709		solf printVectors $\left[\frac{y_{1}}{y_{2}} + \frac{y_{1}}{y_{2}} + \frac{y_{2}}{y_{2}} \right]$ (V) the sub('exp') very v units (V) the sub('calc')
710		v_{calc} v unite $\langle V_{i+h} v_{auh}(v_{auh}) + \langle -V_{i+h} v_{auh}(v_{calc}) + \langle V_{i+h} v_{auh}(v_{auh}) + \langle -V_{i+h} v_{auh}(v_{calc}) + \langle V_{i+h} v_{auh}(v_{auh}) + \langle -V_{i+h} v_{auh}(v_{auh}) + \langle -V_{i+$
711		(V) +h sub('avp')+'-V'+h sub('calc')+'/V'+h sub('avp') = hs((usvp-ucalc)/usvp) · · i)
719		[1 + 11. Sub(exp) + -1 + 11. Sub(carc) + [/1 + 11. Sub(exp), abs((yexp) + (1 + 11. sub(exp)), 1)]
712		$1 = \operatorname{array}([[ye, yc]] \text{ for } ye, yc \text{ in } zip(yexp, ycarc) \text{ if } abs(ye+yc) > 1e-0 \text{ and}$
714		abs(yc/ye) < 10
715		N, yexp, yearc = ien(yexp), Y.I[0], Y.I[1]
715		Nremoved = N-len(yexp)
716		# Desvio Relativo Absoluto Medio
717		AARD = abs((yexp-ycalc)/yexp).mean()
718		# Desvio Relativo Absoluto Máximo
719		<pre>maxARD = max(abs((yexp-ycalc)/yexp))</pre>
720		<pre>self.printVars(u'Desvio Absoluto Médio', setDecimalPlaces(AAD, 5), y_units,</pre>
721		u'Desvio Absoluto Máximo', setDecimalPlaces(maxAD, 5), y_units, i)
722		<pre>self.printText(' ', i)</pre>
723		if Nremoved:
724		self.printVars(u'Desvio Relativo Absoluto Médio'+h.sup('* '), setDecimalPlacesPercent(
725		AARD, 2), '', u'Desvio Relativo Absoluto Máximo'+h.sup('* '),
726		<pre>setDecimalPlacesPercent(maxARD, 2), '', i)</pre>
727		if Nremoved == 1:
728		<pre>self.printText(' * Foi desconsiderado 1 ponto experimental', i)</pre>
729		else:
730		<pre>self.printText(' * Foram desconsiderados '+str(Nremoved)+</pre>
731		, pontos experimentais, i)
732		else:
733		self.printVars(u'Desvio Relativo Absoluto Médio', setDecimalPlacesPercent(AARD, 2), '',
734		u'Desvio Relativo Absoluto Máximo', setDecimalPlacesPercent(maxARD, 2), ', i)
735		return
736		
737	def	Molalities in SingleSolvents(self T):
738	401	# Calcula as Molalidades do Sal em solventes simples
730		return f b MY in HOD(T *theta b MY in HOD) f b MY in MEG(T *theta b MY in MEG)
740		ietuin i_b_nk_in_nzo(i, *theta_b_nk_in_nzo), i_b_nk_in_nzo(i, *theta_b_nk_in_nzo)
740	dof	f excess(self b MV in USO MEC & MEC CE T).
741	der	<pre>1_excess(sell, b_mx_lli_nz0_mEG, x_mEG_or, 1/: # Oplasia.</pre>
742		
743		# mu0_MX_in_H20_MEG_E_by_nuKI, in_gamma_MX_in_H20_MEG_E e
744		# In_b_MX_in_H2U_MEG_E
745		<pre>b_MX_in_H2U, b_MX_in_MEG = self.Molalities_in_SingleSolvents(T)</pre>
746		A_phi_H2O = self.A_phi_H2O(T)
747		<pre>beta0_MX_H20, beta1_MX_H20, C_phi_MX_H20 = self.Pitzer_parameters(T)</pre>
748		<pre>ln_gamma_MX_in_H20 = self.ln_gamma_MX(b_MX_in_H20, A_phi_H20, beta0_MX_H20, beta1_MX_H20,</pre>
749		C_phi_MX_H2O)
750		<pre>ln_gamma_MX_in_MEG = self.ln_gamma_MX_in_MEG(ln_gamma_MX_in_H2O, b_MX_in_H2O, b_MX_in_MEG,</pre>
751		Τ)
752		rho_H2O, rho_MEG, epsilon_r_H2O, epsilon_r_MEG = self.rho_and_epsilon_r_of_pures(T)
753		<pre>A_phi_MEG, beta0_MX_MEG, C_phi_MX_MEG = self.A_phi_solv(A_phi_H20, rho_H20,</pre>
754		epsilon_r_H2O, rho_MEG, epsilon_r_MEG), beta0_MX_H2O, C_phi_MX_H2O
755		<pre>def fsolve_beta1_MX_MEG(beta1_MX_MEG):</pre>
756		return ln_gamma_MX_in_MEG - self.ln_gamma_MX(b_MX_in_MEG, A_phi_MEG, beta0_MX_MEG,
757		<pre>beta1_MX_MEG, C_phi_MX_MEG)</pre>
757 758		<pre>beta1_MX_MEG, C_phi_MX_MEG) beta1_MX_MEG = fsolve(fsolve_beta1_MX_MEG, beta1_MX_H20)</pre>
757 758 759		<pre>beta1_MX_MEG, C_phi_MX_MEG) beta1_MX_MEG = fsolve(fsolve_beta1_MX_MEG, beta1_MX_H2O) rho_H20_MEG, epsilon_r_H20_MEG = self.rho_and_epsilon_r_of_mixing(rho_H2O, rho_MEG,</pre>

```
761
                      A_phi_H20_MEG = self.A_phi_solv(A_phi_H20, rho_H20, epsilon_r_H20, rho_H20_MEG,
762
                             epsilon r H2O MEG)
763
                      beta0_MX_H20_MEG, beta1_MX_H20_MEG, C_phi_MX_H20_MEG = self.Pitzer_parameters_in_mixtures(
764
                             beta0_MX_H20, beta1_MX_H20, beta1_MX_MEG, epsilon_r_H20, epsilon_r_MEG,
765
                             epsilon_r_H20_MEG, C_phi_MX_H20)
766
                      ln_gamma_MX_in_H20_MEG = self.ln_gamma_MX(b_MX_in_H20_MEG, A_phi_H20_MEG, beta0_MX_H20_MEG,
767
                             beta1_MX_H20_MEG, C_phi_MX_H20_MEG)
768
                      ln_b_MX_in_H20_MEG_id = self.linearMixingRule(log(b_MX_in_H20), log(b_MX_in_MEG), x_MEG_SF)
769
                      ln_b_MX_in_H20_MEG_E = self.excessProperty(log(b_MX_in_H20_MEG), ln_b_MX_in_H20_MEG_id)
770
                      ln_gamma_MX_in_H20_MEG_id = self.linearMixingRule(ln_gamma_MX_in_H20, ln_gamma_MX_in_MEG,
771
                             x_MEG_SF)
772
                      ln_gamma_MX_in_H20_MEG_E = self.excessProperty(ln_gamma_MX_in_H20_MEG,
773
                             ln_gamma_MX_in_H20_MEG_id)
774
                      mu0_MX_in_H20_MEG_E_by_nuRT = -ln_b_MX_in_H20_MEG_E - ln_gamma_MX_in_H20_MEG_E
775
                      return (mu0_MX_in_H20_MEG_E_by_nuRT, ln_gamma_MX_in_H20_MEG_E,
776
                             ln_b_MX_in_H20_MEG_E, ln_gamma_MX_in_H20_MEG)
777
778
                def runCalculations(self):
779
                      if not QFile.exists(self.lineEdit_Datafile.text()):
                            self.pushButton_Run.setEnabled(False)
780
781
                             return
782
                      QApplication.setOverrideCursor(Qt.WaitCursor)
783
                      self.textEdit_GeneralReport.clear()
784
                      self.printText(h.title(u'<br>LEITURA, TRIAGEM E CONVERSÃO DAS UNIDADES DOS DADOS DE '
785
                             u'EQUILÍBRIO<br>', 'gray', 'white'))
786
                      self.readDataset()
                      self.printText('<br><br>'+h.b(u'DADOS DE EQUILÍBRIO ESCOLHIDOS PARA REGRESSÃO')+':')
787
788
                      self.printVectors(['Rf-5']*2+['Rf-2', 'Ls0'], h.i('x')+h.sub('MEG'), x_MEG_SF_reg, '',
                             h.i('b')+h.sub(MX)+h.sup('{H20+MEG}'), b_MX_in_H20_MEG_reg, u'mol·kg'+h.sup('-1'),
789
790
                            h.i('T'), T_reg, 'K', u'Referência', [BibRef[_] for _ in iBibRef_reg], '')
                      self.printText(h.b('Total de pontos experimentais')+': '+str(len(x_MEG_SF_reg)))
791
792
                      if x_MEG_SF_prd != []:
                             self.printText('<br><br>'+h.b(u'DADOS DE EQUILÍBRIO ESCOLHIDOS PARA PREDICÃO')+':')
793
794
                             self.printVectors(['Rf-5']*2+['Rf-2', 'Ls0'], h.i('x')+h.sub('MEG'), x_MEG_SF_prd, '',
795
                                   h.i('b')+h.sub(MX)+h.sup('{H20+MEG}'), b_MX_in_H20_MEG_prd, u'mol·kg'+h.sup('-1'),
796
                                   h.i('T'), T_prd, 'K', u'Referência', [BibRef[] for _ in iBibRef_prd], '')
797
                             self.printText('<b>Total de pontos experimentais</b>: '+str(len(x_MEG_SF_prd))+'')
                      self.printText('<br><br><br><br><br><br>>'+h.title(u'<br>DADOS DE EQUILÍBRIO DE SOLUÇÕES DE '+MX+' EM '
798
799
                             u'SOLVENTE SIMPLES PARA AJUSTE POR REGRESSÃO<br>', 'gray', 'white'))
800
                      global b_MX_in_H20_reg, T_MX_in_H20_reg, i_MX_in_H20_reg
801
                      global b_MX_in_MEG_reg, T_MX_in_MEG_reg, i_MX_in_MEG_reg
802
                      b_MX_in_H20_reg, T_MX_in_H20_reg, i_MX_in_H20_reg = [], [], []
803
                      b_MX_in_MEG_reg, T_MX_in_MEG_reg, i_MX_in_MEG_reg = [], [], []
804
                      for b, x , T , i in zip(b_MX_in_H20_MEG_reg, x_MEG_SF_reg, T_reg, iBibRef_reg):
805
                             if x < 0.01:
806
                                   multAppend(b_MX_in_H20_reg, b, T_MX_in_H20_reg, T, i_MX_in_H20_reg, i)
807
                             elif x > 0.99:
808
                                   multAppend(b_MX_in_MEG_reg, b, T_MX_in_MEG_reg, T, i_MX_in_MEG_reg, i)
809
                      (b_MX_in_H20_reg, T_MX_in_H20_reg, i_MX_in_H20_reg, b_MX_in_MEG_reg, T_MX_in_MEG_reg,
810
                             i_MX_in_MEG_reg) = multToArray(b_MX_in_H20_reg, T_MX_in_H20_reg, i_MX_in_H20_reg,
811
                             b_MX_in_MEG_reg, T_MX_in_MEG_reg, i_MX_in_MEG_reg)
812
                      self.printText(h.b(u'DADOS DE EQUILÍBRIO (H'+h.sub('2')+'0)')+':')
                      self.printVectors(['Rf-5', 'Rf-2', 'Ls0'], h.i('b')+h.sub(MX)+h.sup('{H20}'),
813
814
                             b_MX_in_H20_reg, u'mol·kg'+h.sup('-1'), h.i('T'), T_MX_in_H20_reg, 'K', u'Referência',
815
                             [BibRef[_] for _ in i_MX_in_H20_reg], '')
                      self.printText(h.b('Total de pontos experimentais')+': '+str(len(b_MX_in_H20_reg)))
816
817
                      self.printText(u'<br><br>'+h.b(u'AJUSTE POR REGRESSÃO (H'+h.sub('2')+'0)')+':')
818
                      fstr_b_MX_in_H20 = 'T, *theta: exp(theta[0]+theta[1]*T+theta[2]*log(T))'
                      \texttt{fprint}_b_MX_in_H20 = u'\exp[\theta'+h.sub('0')+u' + \theta'+h.sub('1')+u' \cdot'+h.i('T')+u' + \theta'+h.sub('1')+u' + h.sub('1')+u' + h.sub('1')+h.sub('1')+h.sub('1')+u' + h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1'')+h.sub('1')+h.sub('1')+h.sub('1')+h.sub('1')+
819
820
                             '2')+u'·ln('+h.i('T')+')]'
```

```
821
              yprint_b_MX_in_H20 = h.i('b')+h.sub(MX)+h.sup('{H20}')
822
              global f_b_MX_in_H2O, theta_b_MX_in_H2O
823
              f_b_MX_in_H20, theta_b_MX_in_H20 = self.nl_regression(fstr_b_MX_in_H20, fprint_b_MX_in_H20,
824
                  yprint_b_MX_in_H20, u'mol·kg'+h.sup('-1'), T_MX_in_H20_reg, b_MX_in_H20_reg,
825
                  [1, .001, 1])
              self.printText('<br><br>'+h.b(u'DADOS DE EQUILÍBRIO (MEG)')+':')
826
827
              self.printVectors(['Rf-5', 'Rf-2', 'Ls0'], h.i('b')+h.sub(MX)+h.sup('{MEG}'),
828
                  b_MX_in_MEG_reg, u'mol·kg'+h.sup('-1'), h.i('T'), T_MX_in_MEG_reg, 'K', u'Referência',
829
                  [BibRef[_] for _ in i_MX_in_MEG_reg], '')
830
              self.printText(h.b('Total de pontos experimentais')+': '+str(len(b_MX_in_MEG_reg)))
831
              self.printText('<br><br>'+h.b(u'AJUSTE POR REGRESSÃO (MEG)')+':')
832
              fstr_b_MX_in_MEG = 'T, *theta: exp(theta[0]+theta[1]*T)'
833
              fprint_b_MX_in_MEG = u'exp(θ'+h.sub('0')+u' + θ'+h.sub('1')+u'.'+h.i('T')+')'
834
              yprint_b_MX_in_MEG = h.i('b')+h.sub(MX)+h.sup('{MEG}')
835
              global f_b_MX_in_MEG, theta_b_MX_in_MEG
836
              f_b_MX_in_MEG, theta_b_MX_in_MEG = self.nl_regression(fstr_b_MX_in_MEG, fprint_b_MX_in_MEG,
837
                  yprint_b_MX_in_MEG, u'mol·kg'+h.sup('-1'), T_MX_in_MEG_reg, b_MX_in_MEG_reg, [1, .001])
838
              global mu0_MX_in_H20_MEG_E_by_nuRT_reg, ln_gamma_MX_in_H20_MEG_E_reg
839
              global ln_b_MX_in_H20_MEG_E_reg, ln_gamma_MX_in_H20_MEG_reg
840
              (mu0_MX_in_H20_MEG_E_by_nuRT_reg, ln_gamma_MX_in_H20_MEG_E_reg,
841
                  ln_b_MX_in_H20_MEG_E_reg, ln_gamma_MX_in_H20_MEG_reg) = self.f_excess(
842
                      b_MX_in_H20_MEG_reg, x_MEG_SF_reg, T_reg)
843
              global mu0_MX_in_H20_MEG_E_by_nuRT_prd, ln_gamma_MX_in_H20_MEG_E_prd
844
              global ln_b_MX_in_H20_MEG_E_prd, ln_gamma_MX_in_H20_MEG_prd
845
              (mu0_MX_in_H20_MEG_E_by_nuRT_prd, ln_gamma_MX_in_H20_MEG_E_prd,
                  ln_b_MX_in_H20_MEG_E_prd, ln_gamma_MX_in_H20_MEG_prd) = self.f_excess(
846
847
                      b_MX_in_H20_MEG_prd, x_MEG_SF_prd, T_prd)
848
              self.printText('<br>>'+h.title(u'<br>DADOS DE EQUILÍBRIO DE SOLUÇÕES DE '+MX+' EM '
849
                  u'MISTURA DE SOLVENTES PARA AJUSTE POR REGRESSÃO<br/>br>', 'gray', 'white'))
850
              def fstr_mu0_MX_in_H20_MEG_E_by_nuRT(X,*a):
851
                  x.t.f=X[0].X[1].0
852
                  for i in range(0,len(a),2):
853
                      f += (a[i]+a[i+1]*t)*x**(i/2)
854
                  f *= x*(1-x)
855
                  return f
856
              s0 = h.sub(MX)+h.sup('{'+'H20+MEG'+'}')
857
              s1 = 'x' + s0
              fprint_mu0_MX_in_H20_MEG_E_by_nuRT = s1+'(1-'+s1+u')[0+h.sub('0')+u'+0+h.sub('1')+ \
858
859
                  u'T+(\theta'+h.sub('2')+u'+\theta'+h.sub('3')+'T)'+s1+u'+(\theta'+h.sub('4')+u'+\theta'+h.sub('5')+'T)'+ \\ (h) = 0
860
                  s1+h.sup('2')+']'
861
              yprint_mu0_MX_in_H20_MEG_E_by_nuRT = u'[\mu'+h.sup('0')+s0+']'+h.sup('E')+u'/\nu RT'
              global f_mu0_MX_in_H20_MEG_E_by_nuRT, theta_mu0_MX_in_H20_MEG_E_by_nuRT
862
863
              self.printText(h.b(u'DADOS DE EQUILÍBRIO (H'+h.sub('2')+'0+MEG)')+':')
              self.printVectors(['Rf-5']*2+['Rf-2', 'Ls0'], h.i('x')+h.sub('MEG'), x_MEG_SF_reg, '',
864
865
                  h.i('b')+h.sub(MX)+h.sup('{H20+MEG}'), b_MX_in_H20_MEG_reg, u'mol·kg'+h.sup('-1'),
866
                  h.i('T'), T_reg, 'K', u'Referência', [BibRef[_] for _ in iBibRef_reg], '')
867
              self.printText(h.b('Total de pontos experimentais')+': '+str(len(x_MEG_SF_reg))+'<br>')
868
              theta0 = random.rand(6)*100-200
869
              (f_mu0_MX_in_H20_MEG_E_by_nuRT, theta_mu0_MX_in_H20_MEG_E_by_nuRT) = self.nl_regression((
870
                  fstr_mu0_MX_in_H20_MEG_E_by_nuRT, ), fprint_mu0_MX_in_H20_MEG_E_by_nuRT,
871
                  yprint_mu0_MX_in_H20_MEG_E_by_nuRT, '', array([x_MEG_SF_reg, T_reg]),
872
                  mu0_MX_in_H20_MEG_E_by_nuRT_reg, theta0)
873
              self.pushButton_Run.setEnabled(False)
874
              self.tabWidget.setEnabled(True)
875
              QApplication.restoreOverrideCursor()
876
877
          def f_plot(self, i):
878
              if i:
879
                  T choice = self.validateIsotherms(None)
880
                  if len(T_choice) < 1:</pre>
```

```
881
                      return
882
              QApplication.setOverrideCursor(Qt.WaitCursor)
883
              canvas.ax.clear()
884
              self.textEdit Statistics.clear()
885
              self.printText(h.title(u'<br>RESUMO ESTATÍSTICO BÁSICO<br>', 'gray', 'white'), 1)
886
              comboBoxs = [(self.comboBox_Plot1_y_C, self.comboBox_Plot1_y_solv,
887
                  self.comboBox_Plot1_y_C, self.comboBox_Plot1_x_T, self.comboBox_Plot1_y_solv),
888
                  (self.comboBox_Plot2_x_C_SF, self.comboBox_Plot2_x_solv,
                  self.comboBox_Plot2_y_C, self.comboBox_Isotherms_T, self.comboBox_Isotherms_mode),
889
890
                  (self.comboBox_Plot3_x_C_SF, self.comboBox_Plot3_x_solv,
891
                  self.comboBox_Plot3_y_F, self.comboBox_Isotherms_T, self.comboBox_Isotherms_mode),
892
                  (self.comboBox_Plot4_x_C_SF, self.comboBox_Plot4_x_solv,
893
                  self.comboBox_Plot4_y_F_E, self.comboBox_Isotherms_T, self.comboBox_Isotherms_mode)][i]
894
              i_C, i_solv, i_F, i_T, i_mode = (_.currentIndex() for _ in comboBoxs)
              solv = ['MEG', 'H_20'][i_solv]
895
              ssolv = ['MEG', 'H2O'][i_solv]
896
897
              s0, s1, f_T = r'\{\rm{', r'}\}}_{\rm{'+MX+'}}', lambda _: convertT(_, i_T)
898
              ss0 = h.sub(MX)
899
              unitsC = lambda _: [r'\ \left(\rm{mol\cdot '+['kg', 'L'][_%2]+'^{-1}}\\right)', ''][_//2]
900
              uunitsC = lambda _: [u'mol·'+['kg', 'L'][_%2]+h.sup('-1'), ''][_//2]
901
              if i:
902
                  s0 += 'H_20+MEG'+s1
903
                  ss0 += h.sup('{'+'H20+MEG'+'}')
904
                  f0_x = lambda _: self.convertC_SF(_, i_C)
905
                  f_x = [lambda _: f0_x(_), lambda _: 1-f0_x(_)][i_solv]
906
                  xLabel = 'xw'[i_C]+r"'_{\rm{"+solv+'}}'
907
                  if i == 1:
908
                      f_y = lambda *_: self.convertC(_[0], _[1], _[2], i_F)
909
                      yLabel = 'bcxw'[i_F]+'^{'+s0+unitsC(i_F)
910
                      y_print, y_units = 'bcxw'[i_F]+ss0, uunitsC(i_F)
911
                  elif i == 2:
                      f_y, yLabel = [lambda *_: exp(_[0]), lambda *_: _[0]][i_F], \
912
913
                          r'\ln\ '*i_F+r'\gamma^{'+s0}
914
                      y_print, y_units = 'ln '*i_F+u'\gamma'+ss0, ''
915
                  else:
916
                      f_y, yLabel = lambda *_: _[0], '{\\left[\\'+['mu^{0', r'ln\ \gamma^{',
917
                          r'ln\ b^{'][i_F]+s0+r'\right]}^{\rm{E}}'+r' / {\nu RT}'*(not i_F)
918
                      y_print, y_units = '['+[u'\mu'+h.sup('0'), u'ln \gamma', 'ln b'][i_F]+ \
919
                          ss0+']'+h.sup('E')+u'/vRT'*(not i_F), ''
920
              else:
921
                  f_x = f_T
922
                  xLabel = r'T\ \left(\rm{'+UNITS T[i T]+r'}\right)'
923
                  f_y = lambda *_: self.convertC(_[0], _[1], _[2], i_F)
924
                  yLabel = 'bcxw'[i_F]+'^{'+s0+solv+s1+unitsC(i_F)
925
                  y_print, y_units = 'bcxw'[i_F]+ss0+h.sup('{'+ssolv+'}'), uunitsC(i_F)
926
              xLabel, yLabel = '$'+xLabel+'$', '$'+yLabel+'$'
927
              def selectPoints(x all, T all, T):
928
                  return array([x for _, x in enumerate(x_all) if abs(T_all[_]-T) < 0.05])</pre>
929
              def minmaxPlot(x, sizeExpansion=5, onlyPositive=False):
930
                  xMin, xMax, n = min(x), max(x), 100/sizeExpansion
931
                  dx = abs(xMax-xMin) / n
932
                  if onlyPositive:
                      return (xMin-dx) * (xMin-dx > 0), xMax+dx
933
934
                  return xMin-dx, xMax+dx
935
              global handles, labels
936
              handles, labels = [], []
937
              Ycurve, Ypoints, nPoints = array([]), array([]), 50
938
              x_all, T_all, i_all = [(x_MEG_SF_reg, T_reg, iBibRef_reg), (x_MEG_SF_prd, T_prd,
939
                  iBibRef_prd)][i_mode]
940
              color, marker = f_gen(COLORS), f_gen(MARKERS)
```

941	if i:
942	if i_mode == 0 and i == 3 and i_F == 0 and set(T_choice).issubset(set(T_all)):
943	<pre>self.printText(u'Apresenta-se aqui uma estatística básica referente somente a{0} '</pre>
944	u'isoterma{0} selecionada{0}. A estatística completa da regressão encontra-se '
945	u'na aba "RELATÓRIO GERAL" '.format('s'*(len(T choice) > 1)), 1)
946	xMin, xMax, vMin, vMax = 0, 1, None, None
947	x MEG SE 0 = linspace(xMin xMax nPoints)
948	def fsolve b MX in H20 MEG(b MX in H20 MEG mu0 MX in H20 MEG E by nuRT x MEG SF T).
949	return muO MX in HOO MFC F by nuRT-self f excess(b MX in HOO MFC y MFC SF T)[0]
950	Plote MARKERe iBibBefe = [] [] []
051	Plot = mlines Line2D([] [] color='k' linestyle = '-' ly=2)
052	<pre>handles expend(Dist)</pre>
952	labela amand(Madela IAEOGGWG))
955	fam i Ti in community (T choice)
954	<pre>ior j, ij in enumerate(i_cnoice): </pre>
955	X_MEG_SF = concatenate((X_MEG_SF_0, selectPoints(X_aii, 1_aii, 1])))
956	muU_MX_in_H2U_MEG_E_by_nuRT = f_muU_MX_in_H2U_MEG_E_by_nuRT([x_MEG_SF, T]],
957	*theta_mu0_MX_in_H2U_MEG_E_by_nuKI)
958	b_MX_in_H2U, b_MX_in_MEG = self.Molalities_in_SingleSolvents(Tj)
959	b_MX_in_H2O_MEG = fsolve(fsolve_b_MX_in_H2O_MEG, self.linearMixingRule(b_MX_in_H2O,
960	b_MX_in_MEG, x_MEG_SF), args=(mu0_MX_in_H20_MEG_E_by_nuRT, x_MEG_SF, Tj))
961	if i == 1:
962	$y = f_y(b_MX_in_H20_MEG, x_MEG_SF, Tj)$
963	y_all = [b_MX_in_H20_MEG_reg, b_MX_in_H20_MEG_prd][i_mode]
964	else:
965	$k = 3-(3-i_F)*(i == 3)$
966	<pre>y = f_y(self.f_excess(b_MX_in_H20_MEG, x_MEG_SF, Tj)[k])</pre>
967	<pre>y_all = [(mu0_MX_in_H20_MEG_E_by_nuRT_reg, ln_gamma_MX_in_H20_MEG_E_reg,</pre>
968	<pre>ln_b_MX_in_H20_MEG_E_reg, ln_gamma_MX_in_H20_MEG_reg), (</pre>
969	<pre>mu0_MX_in_H20_MEG_E_by_nuRT_prd, ln_gamma_MX_in_H20_MEG_E_prd,</pre>
970	<pre>ln_b_MX_in_H20_MEG_E_prd, ln_gamma_MX_in_H20_MEG_prd)][i_mode][k]</pre>
971	<pre>yMin = min(yMin, min(y)) if yMin else min(y)</pre>
972	<pre>yMax = max(yMax, max(y)) if yMax else max(y)</pre>
973	x, $T = f_x(x_MEG_SF)$, $f_T(Tj)$
974	COLOR = color.next()
975	<pre>xCurve, yCurve, xPoints = x[:nPoints], y[:nPoints], x[nPoints:]</pre>
976	<pre>canvas.ax.plot(xCurve, yCurve, COLOR+'-', lw=2)</pre>
977	<pre>Plot = mpatches.Patch(color=COLOR)</pre>
978	handles.insert(j, Plot)
979	<pre>labels.insert(j, toStr(T)+' '+UNITS_T[i_T]+(' ('+MODE[i_mode]+')')*(i_mode == 1</pre>
980	<pre>or i == 3 and i_F == 0 and set(T_choice).issubset(set(T_all))))</pre>
981	if len(xPoints):
982	<pre>yPoints = f_y(selectPoints(y_all, T_all, Tj), x_MEG_SF[nPoints:], Tj)</pre>
983	<pre>yMin, yMax= min(yMin, min(yPoints)), max(yMax, max(yPoints))</pre>
984	iPoints = selectPoints(i_all, T_all, Tj)
985	<pre>for k in list(set(iPoints)):</pre>
986	<pre>xPoints_k = [x_k for (x_k, i_k) in zip(xPoints, iPoints) if i_k == k]</pre>
987	<pre>yPoints_k = [y_k for (y_k, i_k) in zip(yPoints, iPoints) if i_k == k]</pre>
988	if k in iBibRefs:
989	MARKER = MARKERs[iBibRefs.index(k)]
990	<pre>Plot = mlines.Line2D([], [], color='w', marker=MARKER[0],</pre>
991	markersize=MARKER[1])
992	else:
993	MARKER = marker.next()
994	Plot = mlines.Line2D([]. []. color='w'. marker=MARKER[0].
995	markersize=MARKER[1])
996	multAppend(handles Plot labels RihRef[k])
997	multAnnend(MARKERs MARKER iRihRafs b)
908	Dicts annend (Friedlinte & Theinte & COLOD MADVED)
990	v(urve = v[nDointer]
1000	yourve year onceteneta((Veurve veurve)) conceteneta((Veeinte
1000	fourve, ipoints - concatenate((fourve, yourve)), concatenate((ipoints,

1001	yPoints))
1002	for Plot in Plots:
1003	<pre>canvas.ax.plot(Plot[0], Plot[1], Plot[2]+Plot[3][0], markersize=Plot[3][1])</pre>
1004	else:
1005	self.printText(u'A estatística completa da regressão encontra-se na aba "RELATÓRIO '
1006	'GERAL" >', 1)
1007	(b_MX_in_solv, T_MX_in_solv, i_MX_in_solv, f_b_MX_in_solv, theta_b_MX_in_solv, x_MEG_SF
1008) = [(b_MX_in_MEG_reg, T_MX_in_MEG_reg, i_MX_in_MEG_reg, f_b_MX_in_MEG,
1009	<pre>theta_b_MX_in_MEG, 1), (b_MX_in_H20_reg, T_MX_in_H20_reg, i_MX_in_H20_reg,</pre>
1010	<pre>f_b_MX_in_H20, theta_b_MX_in_H20, 0)][i_solv]</pre>
1011	<pre>xMin, xMax = minmaxPlot(T_MX_in_solv)</pre>
1012	xMin *= (xMin > 0)
1013	T = linspace(xMin, xMax, nPoints)
1014	xCurve, yCurve = f_x(T), f_y(f_b_MX_in_solv(T, *theta_b_MX_in_solv), x_MEG_SF, T)
1015	xMin, xMax, yMin, yMax = min(xCurve), max(xCurve), min(yCurve), max(yCurve)
1016	labels.append(u'Regressão')
1017	COLOR = color.next()
1018	<pre>Plot, = canvas.ax.plot(xCurve, yCurve, COLOR+'-', 1w=2)</pre>
1019	handles.append(Plot)
1020	<pre>iBibRef = list(set(i_MX_in_solv))</pre>
1021	<pre>for j, k in enumerate(iBibRef):</pre>
1022	<pre>T = array([T for T, _ in zip(T_MX_in_solv, i_MX_in_solv) if _ == k])</pre>
1023	xPoints = f_x(T)
1024	<pre>yPoints = f_y(array([b for b, _ in zip(b_MX_in_solv, i_MX_in_solv) if _ == k]</pre>
1025), x_MEG_SF, T)
1026	xMin, xMax, yMin, yMax = (min(xMin, min(xPoints)), max(xMax, max(xPoints)),
1027	<pre>min(yMin, min(yPoints)), max(yMax, max(yPoints)))</pre>
1028	COLOR, MARKER = color.next(), marker.next()
1029	<pre>Plot, = canvas.ax.plot(xPoints, yPoints, COLOR+MARKER[0], markersize=MARKER[1])</pre>
1030	<pre>multAppend(handles, Plot, labels, BibRef[k])</pre>
1031	<pre>yCurve = f_y(f_b_MX_in_solv(T, *theta_b_MX_in_solv), x_MEG_SF, T)</pre>
1032	Ycurve, Ypoints = concatenate((Ycurve, yCurve)), concatenate((Ypoints, yPoints))
1033	<pre>self.calculateBasicStatistics(Ycurve, Ypoints, y_print, y_units, 1)</pre>
1034	<pre>self.changeSize(1)</pre>
1035	canvas.ax.set_xlabel(xLabel)
1036	canvas.ax.set_ylabel(yLabel)
1037	canvas.ax.grid(True)
1038	canvas.ax.set_xlim(minmaxPlot(array([xMin, xMax])))
1039	<pre>canvas.ax.set_ylim(minmaxPlot(array([yMin, yMax])))</pre>
1040	self.changeSize(2)
1041	self.tabWidget.setTabEnabled(3, True)
1042	self.tabWidget.setCurrentIndex(3)
1043	QApplication.restoreUverrideCursor()
1044	
1045	
1046	der main():
1047	app = uApplication(sys.argv)
1040	form about
1049	
1051	aya.ext(app.exec_())
1059	
1052	if name == ' main '.
1054	
1004	marm()
L	

D.6 Arquivo com Dados de Entrada

Nestes arquivos os itens em cada linha são separados por ponto e vírgula (;), sendo que todos os espaços e tabulações imediatamente antes e imediatamente após o ponto e vírgula são desconsiderados como informação, possuindo efeito apenas cosmético. O primeiro item em cada linha significa o tipo da variável apresentada ou, caso seja nulo (espaços e/ou tabulações), significa a continuação da informação referente a variável anteriormente apresentada. Os tipos das variáveis podem ser: int, float, str e unicode, ou ainda o tipo com aplicação especial: vectors, que é utilizado na citação de variáveis que são vetores. Por meio deste tipo especial, declara-se os vetores nas colunas formadas pela separação de idêntica quantidade de ponto e vírgula, sendo que na primeira linha de cada coluna é citado o tipo do vetor, na segunda o nome do vetor, na terceira as unidades dos dados contidos no vetor e, por último, nas linhas seguintes, os dados do vetor. Todos os dados do tipo float devem utilizar vírgula (,) como ponto decimal.

D.6.1 Arquivo principal

Neste arquivo, as linhas de 1 a 5 informa o vetor *ions*, ou seja, o vetor com o nome do cátion e do ânion. As linha 6 e 7 informam as variáveis respectivamente z_M e z_X, ou seja, as cargas dos íons. As linha 8 e 9 informam as variáveis respectivamente nu_M e nu_X, ou seja, os coeficientes estequiométricos dos íons. As linha 10 e 11 informam as variáveis respectivamente M_MX e Delta_tr_GO_H2O_to_MEG, ou seja, respectivamente a massa molar de MX e a Energia Livre de Gibbs de Transferência da água para o MEG. As linhas seguintes contém o vetor DataFilename com o nome dos arquivos com dados de equilíbrio a serem utilizados.

Como exemplo, segue o arquivo de dados de entrada principal, utilizado nesta tese de doutorado, para o KCl:

1	vectors	;	str
2		;	ions
3		;	
4		;	K
5		;	Cl
6	int	;	z_M ; 1
7	int	;	z_X ; 1
8	int	;	nu_M ; 1
9	int	;	nu_X ; 1
10	float	;	M_MX ; 74,5550 ; g·mol ⁻¹
11	float	;	<pre>Delta_tr_G0_H20_to_MEG ; 7000 ; J·mol⁻¹</pre>
12	vectors	;	str
13		;	DataFilename
14		;	
15		;	data_KCl_Chiavone-Filho1993.dat
16		;	data_KCl_Isbin1945.dat
17		;	data_KCl_Kraus1964.dat
18		;	data_KCl_Lide2009.dat

Principal.in

19	; data_KCl_Linke1965.dat
20	; data_KCl_Trimble1931.dat
21	; data_KCl_Zhou2010.dat

D.6.2 Arquivo específico

Neste arquivo, a linha 1 informa a variável BibRef, ou seja, a variável que contém a informação de referência bibliográfica dos sados experimentais presentes neste arquivo. A linha 2 informa a variável DataType, ou seja, o número de referência das unidades dos dados experimentais presentes no arquivo. As linhas seguintes contém o vetores com os dados de equilíbrio contidos na respectivas variáveis citadas na linha 4.

Como exemplo, segue um dos arquivos de dados de entrada específico que contém um conjunto de dados de equilíbrio, utilizado nesta tese de doutorado, para o KCl:

										p 01		
1	str	;	<pre>BibRef ;</pre>	T	rimble	(193	31)				
2	int	;	DataType	;	1							
3	vectors	;	float	;	float		;	float	;	float	;	str
4		;	w_MEG_SF	;	m_H20	_MEG	;	m_KCl	;	Т	;	usage
5		;		;	g		;	g	;	°C	;	
6		;	0,0000	;		100	;	37,18	;	30	;	REGR
7		;	0,1933	;		100	;	28,16	;	30	;	REGR
8		;	0,4010	;		100	;	19,80	;	30	;	REGR
9		;	0,5898	;		100	;	13,43	;	30	;	REGR
10		;	0,7942	;		100	;	8,40	;	30	;	REGR
11		;	1,0000	;		100	;	5,37	;	30	;	REGR

Experimentos.dat _