PROPRIEDADES DE ÓLEO E GÁS

ÓLEOS DE BAIXO ENCOLHIMENTO (BLACK OIL)

DEFINIÇÕES:

- **Pseudo-Componente ÓLEO**: mistura de hidrocarbonetos que se encontra na fase líquida nas condições padrão;
- **Pseudo-Componente GÁS**: mistura de hidrocarbonetos que se encontra na fase gasosa nas condições padrão;
- Fase ÓLEO: mistura de hidrocarbonetos que se encontra na fase líquida na condição especificada;
- Fase GÁS: mistura de hidrocarbonetos que se encontra na fase gasosa na condição especificada.
- 1. Densidade Relativa (γ_0)

$$\gamma_o = \rho_o / \rho_w$$

2. Grau API (°API)

$$^{\circ}$$
API = $\frac{141,5}{\gamma_{\circ}}$ - 131,5 ou $\gamma_{\circ} = \frac{141,5}{^{\circ}$ API + 131,5

 γ_o em condições padrão (standard conditions = 14,7 psia @ 60°F)

Exemplo:
$$\rho_{osc} = 50$$
 lb/cuft
$$\rho_{w} = 62,4$$
 lb/cuft
$$\gamma_{o} = \rho_{o} / \rho_{w} =$$

$$^{o}API =$$

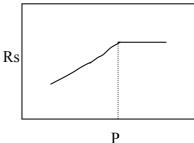
3. Fator Volume de Formação do Óleo (Bo): pode ser definido como o volume da fase óleo (óleo + gás dissolvido) nas condições (P,T) dividido pelo volume de óleo nas condições padrão.

$$Bo = \frac{\left[V_{Oleo+GasDissolvido}\right]_{P,T}}{\left[V_{Oleo}\right]_{STD}}$$

Во

Unidades bbl_{RES}/STB ou m³_{RES}/m³_{STD}

Vo @
$$P_R$$
, $T_R = 400 \text{ cc}$

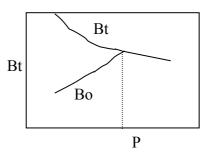

Vo no tanque (std) =
$$300 \text{ cc}$$

4. Razão de Solubilidade (Rs) em uma certa condição (P,T): é o volume de gás dissolvido na fase óleo, medido nas condições padrão, dividido pelo volume de óleo, medido nas condições padrão.

$$Rs = \frac{\left[V_{Gd}\right]_{std}}{\left[V_{O}\right]_{std}}$$

 $\begin{array}{ll} Unidades & SCF/STB \ ou \ m^3{}_{STD}/m^3{}_{STD} \\ Ex.: \ Vg_{sc} = 1,5 \ cuft \ \ Vo_{sc} = 300 \ cc \end{array}$

$$Rs =$$



5. Fator Volume de Formação Total (Bt)

$$Bt = \frac{\left(V_{O+Gd} + V_{Gl}\right)@_{P,T}}{V_{O}@_{STD}}$$

$$Bt = B_o + B_g (R_{sb} - Rs)$$

Unidades: bbl_{RES}/STB, m³_{RES}/m³_{STD}

6. Compressibilidade (Co)

$$C_o = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$

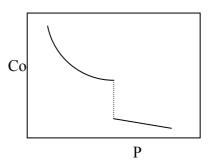
A) Para pressões maiores que a Pressão de Saturação:

$$C_o = -\frac{1}{Bo} \left(\frac{\partial Bo}{\partial P} \right)_T = \frac{1}{\rho_o} \left(\frac{\partial \rho_o}{\partial P} \right)_T = -\left(\frac{\partial (\ln B_o)}{\partial P} \right)_T$$

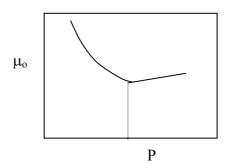
Integrando C_o entre as pressões P₁ e P₂ temos:

$$\int_{P_1}^{P_2} C_o dP = \int_{Bo2}^{Bo1} d(\ln Bo) \quad \logo,$$

$$C_o(P_2 - P_1) = -\ln\left(\frac{B_{o2}}{B_{o1}}\right) = -\ln\left(\frac{V_2}{V_1}\right) = \ln\left(\frac{\rho_2}{\rho_1}\right)$$


Ex.: Numa célula PVT com óleo, medimos:

$$Vo1 = 60 \text{ cc}$$
 @ 5000 psi e 220 F
 $Vo2 = 61 \text{ cc}$ @ 4000 psi e 220 F


Calcule Co =

B) Para pressões menores que a Psat:

$$C_o = -\frac{1}{B_o} \left[\left(\frac{\partial B_o}{\partial P} \right)_T - B_g \left(\frac{\partial R_s}{\partial P} \right)_T \right]$$

7. Viscosidade (μ_0)

DETERMINAÇÃO das PROPRIEDADES

- 1. Razão Gás-Óleo no tanque (Rs_T)
- 2. Pressão de Bolha ou de Saturação (Bubble point)
- 3. Razão de Solubilidade (Rs)
- 4. Densidade do óleo na Psat ou Pb
- 5. Densidade do óleo acima da Psat ou Pb
- 6. Fator Volume de Formação do Óleo na Psat (Bob)
- 7. Bo acima da Psat
- 8. Fator Volume de Formação Total (Bt)
- 9. Compressibilidade do óleo acima da Psat
- 10. Compressibilidade do Óleo abaixo da Psat

- 11. Viscosidade do óleo abaixo da Psat
- 12. Viscosidade do Óleo acima da Psat

PROPRIEDADES DOS GASES

1. Nº de Moles (n)

$$n = \sum_{i=1}^{m} n_i$$
 ni = número de moles do componente i

2. Fração Molar do componente i (yi)

$$y_i = \frac{n_i}{\sum n_i} = \frac{n_i}{n}$$

3. Peso Molecular da mistura

$$PM_g = \sum y_i PM_i$$

4. Lei dos Gases Ideais

$$PV = nRT$$

onde P = pressão (psia)

V = volume (ft3)

n = número de moles

 $T = temperatura (^{\circ}R)$

R = constante universal dos gases

 $R = 10,732 \text{ psia.ft3/mollb.}^{\circ}R$

Obs: ${}^{\circ}R = {}^{\circ}F + 460,15$

5. Lei dos Gases Reais

$$PV = znRT$$

z = fator de compressibilidade do gás

6. Densidade (ρg)

$$\rho_g = \frac{m_g}{V_{\sigma}}$$

Para calcular a densidade de um gás a uma certa pressão P e temperatura T, precisamos utilizar a lei dos gases reais:

PV = znRT como sabemos que $n = \frac{m_g}{PM_g}$ obtemos a expressão para a densidade:

$$\rho_g = \frac{m_g}{V} = \frac{P.PM_g}{zRT}$$

Usando unidades inglesas, a densidade fica em lb/ft³. Para obtermos a densidade em g/cm³ utilizamos a conversão:

$$1 \text{ g/cm}^3 = 62,4 \text{ lb/ft}^3$$

Exemplo: determinar a densidade de um gás de peso molecular 42 lb.mol a uma temperatura de 150 F e pressão 4000 psia, sendo z = 0,85.

$$\rho_g =$$

7. Densidade Relativa ao Ar (γg), ou Specific Gravity (sg)

$$\gamma_g = \frac{\rho_{gSC}}{\rho_{arSC}} = \frac{PM_g}{PM_{ar}} = \frac{PM_g}{28,96}$$
 (deduzir a equação)

8. Pressão Pseudo-Crítica (Ppc)

A pressão pseudo-crítica pode ser calculada usando a composição do gás:

$$P_{pc} = \sum y_i.Pc_i$$

onde

y_i é a fração molar do componente <u>i</u>

Pc_i é a pressão crítica do componente <u>i</u> (tabela A.1 em anexo)

Se tivermos $\gamma_g\,$ podemos usar o gráfico da figura G1 (17) em anexo.

9. Temperatura Pseudo-Crítica (Tpc)

Se tivermos a composição do gás,

$$T_{pc} = \sum y_i.Tc_i$$

Se tivermos γ_g podemos usar o gráfico da figura G1 (17) em anexo.

10. Pressão Pseudo-Reduzida (Ppr)

$$P_{pr} = \frac{P}{P_{pc}}$$
 onde P é a pressão do gás.

11. Temperatura Pseudo-Reduzida (Tpr)

$$T_{pr} = \frac{T}{T_{pc}}$$
 onde T é a temperatura do gás.

12. Fator de Compressibilidade do Gás (z)

Pela "Lei dos Estados Correspondentes", o fator z pode ser obtido a partir da pressão pseudo-reduzida e da temperatura pseudo-reduzida utilizando-se a figura G2 (15) em anexo.

Caso a composição do gás a ser analisado apresente o "pseudo-componente" heptano+, ou C7+, as propriedades críticas podem ser estimadas utilizando-se os gráficos da figura G3 (3.10) em anexo.

Se o gás em questão apresentar teores consideráveis de H_2S e de CO_2 , as propriedades críticas devem ser corrigidas utilizando-se o fator de correção " ϵ " obtido pela figura G4 (3.12) em anexo, da seguinte forma:

$$T_{pc} = T_{pc} - \varepsilon$$
 e $P_{pc} = \frac{P_{pc} . T_{pc}}{T_{pc} + y_{H2S} (1 - y_{H2S}) \varepsilon}$ onde:

T_{,pc} é a temperatura pseudo-crítica corrigida

P pc é a pressão pseudo-crítica corrigida

 ϵ é o fator de correção obtido pela figura 3.12

y_{H2S} é a fração molar de H₂S no gás considerado.

13. Viscosidade (µg)

$$\mu_g = \mu_{g1} \frac{\mu_g}{\mu_{g1}} \qquad \text{onde}$$

μ_{g1} é a viscosidade do gás na pressão atmosférica (cp)

 μ_g/μ_{g1} é a relação entre a viscosidade em condições de reservatório e a viscosidade a 1 atm (14,7 psia)

Existem duas maneiras de se determinar μ_{g1} :

a) A partir da composição do gás, utilizando-se a figura 6.7 anexa:

$$\mu_{g1} = \frac{\sum \mu_{gi} y_i (PM_i)^{1/2}}{\sum y_i (PM_i)^{1/2}}$$

b) A partir do peso molecular do gás, da temperatura, e das frações molares de H₂S, N₂ e CO₂, utilizando-se a figura G5 (6.8) anexa:

$$\mu_{g1} = \mu_{g1}$$
 (não corrigido) + (soma das correções devido a H₂S, N₂, CO₂)

A determinação de μ_g / μ_{g1} é obtida a partir dos gráficos das figuras G6a e G6b (6.9 e 6.10) em anexo

14. Compressibilidade (cg)

$$c_g = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$
 Utilizando-se a lei dos gases reais, obtemos:

$$c_g = \frac{1}{P} - \frac{1}{z} \left(\frac{\partial z}{\partial P} \right)_T$$
 e se o gás se comporta com um gás ideal resulta em
$$c_g = \frac{1}{P}$$

Para o gás real precisamos estimar z e sua derivada em relação à pressão nas condições de pressão e temperatura consideradas.

Uma outra maneira de se determinar c_g é por intermédio do gráfico mostrado na figura 6.4 em anexo, que nos fornece o produto da compressibilidade pseudo-reduzida c_{pr} pela temperatura pseudo-reduzida T_{pr} . A compressibilidade é então calculada por:

$$c_g = \frac{c_{pr}}{P_{pc}} = \frac{\left(c_{pr}T_{pr}\right)}{T_{pr}P_{pc}}$$

15. Fator Volume de Formação do Gás (Bg)

 B_g é definido como a relação entre o volume do gás em condições de reservatório e o volume do mesmo gás em condições padrão (14,7 psia e 60 °F)

$$B_g = \frac{V_{gRES}}{V_{gSTD}}$$
 utilizando a lei dos gases reais obtemos a relação:

$$B_g = 0.0283 \frac{z_R T_R}{P_R} \text{ (ft}^3_{RES}/\text{ft}^3_{STD}) \text{ ou } (\text{m}^3_{RES}/\text{m}^3_{STD})$$

Obs: derive a equação acima

16. Exercício 1:

Calcule, para o gás cuja composição é dada abaixo, PM_g , γ_g , z, B_g , μ_g e c_g . As condições de reservatório são: 2500 psia e 150 °F.

Obs.: $PM_{c7+} = 142 \text{ lb/lb.mol}$ e $\gamma_{c7+} = 0,807$

1	2	3	4	5	6	7	8
Comp.	Yi	PM_i	Y _i .PM _i	Pci	Y _i .Pc _i	Tci	Y _i .Tc _i
H_2S	0,0491						
CO_2	0,1101						
N_2	0,0051						
C_1	0,5770						
C_2	0,0722						
C_3	0,0445						
C_4	0,0291						
C_5	0,0149						
C_6	0,0145						
C ₇₊	0,0835						
Σ							

17.

18.