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Diagrama de Jablonski
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Estado Fundamental: o mais baixo, não excitado, estado eletrônico de um átomo ou molécula

Transferência de energia intermolecular

D* + A  → D + A*
Donor   Acceptor

E- Etransfer – both D* and A* are 
electronically excited.

Often referred to as “quenching” as it 
removes excess electronic energy of 
initially excited molecule.



Prof. Amilcar Machulek Junior (IQ/USP)

3

Transferência de energia intermolecular

Energy and electron transfer nomenclature

D+ + A        → D +     A+ hole transfer

D- + A        → D +     A- electron transfer

D*     +    A        → D +     A* energy transfer

* Electronic energy transfer

Radiative : trivial mechanism

Non-radiative

coulombic : 50 Å, long-range

electron-exchange : 10~15 Å

Trivial mechanism for energy transfer
(radiative emission-absorption energy transfer)

D*     → D    +    hν
hν +    A      → A*

Trivial energy transfer between D* and A, with A* emitting 
following absorption of emission by D*. Part B emphasizes 
the independence of emission and absorption by noting
that D and A could be in different containers.

The "trivial" mechanism requires that D* emits photons which A is capable of absorbing. The 
rate or probability per unit time of energy transfer from D* to produce A* will depend on:

- High quantum yield for emission from D* φe
D

- High concentration of A [A]
- High extinction coefficient for A εA

- Overlap of emission from D* and absorption from A J =  ∫0  ID εA dν
∞ ~
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Radiative transfer

D* → D + hν
hν + A → A*

Long range
Overlap of absorption 
and emission spectra

Pabs
A - probability of absorption of A

FD(ν) – spectral distribution of donor emission

εA(ν) – molar absorption coefficient of acceptor

l - path length of absorption
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Overlap of absorption spectrum 
of A and emission spectrum of D
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Non-radiative mechanism

A + D* → [AD*] → [A*D] → A* + D

Formation of collision complex
Intramolecular energy transfer within complex

H’ is perturbation due to intermolecular forces (Coulombic, 
long range – “Forster”) or electronic orbital overlap 
(exchange, short range – “Dexter”)
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Long Range (Forster) energy transfer
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There will be a critical distance r0 at which the rate of 
energy transfer is equal to the rate of decay of 
fluorescence of D (Typically r0 = 20 – 50 Å) 

At this point kT = 1/τD.    At any other distance,
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Note Φf
D τD

-1 is equal to the fluorescence rate 
constant for D.
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Short range energy transfer (Dexter)
Exchange interaction; overlap of wavefunctions of 
A and D

L is the sum of the van der Waals radii of donor 
and acceptor

Occurs over separations ≈ collision diameter

Typically occurs via exciplex formation (see below)

)/2exp()( Lrexchangek DAT −∝

Comparison of the Coulombic and Exchange 
mechanisms of electronic energy transfer

donor acceptor

Coulombic
interaction Coulombic

intera
ctio

n

Coulombic

donor acceptor

Electron Exchange

Initial Final
In Coulombic energy 
transfer no electrons 
"change molecules", but 
rather two transitions occur 
simultaneously in a process 
that could be described as 
the transfer of a "virtual 
photon"; Since no electrons 
are actually transferred in 
the Coulombic mechanism, 
it is clear that this process 
cannot have an analogy in 
the case of electron transfer.
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Endotermic and exotermic energy transfer

Schematic surface representation of collisional energy transfer

M* +       Q     → M         +            Q*
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Energy transfer

Energy transfer: triplete-triplete
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Energy transfer: triplete-triplete

Diffusional Encounter:
D   +  A DA

Electron Transfer:
DA  → D+A-

Diffusional Separation:
D+A- D+ +  A-

Back Electron Transfer:
D+A- → DA

Dynamics of electron transfer

The rate of electron transfer depends on:

(1) the distance between the electron donor and acceptor;

(2) standard Gibbs free energy change of the reaction;

(3) the energy associated with molecular rearrangements.  
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OUTER SPHERE Electron Transfer

Inner
Sphere

Central Ion

Outer
Sphere

Inner
Sphere

Central Ion

Outer
Sphere

INNER SPHERE Electron Transfer
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Chemical Kinetics

Chemical Kinetics

Free Energy Scale: Only one unique lowest free energy pathway!

0 1
Extent of Reaction



Prof. Amilcar Machulek Junior (IQ/USP)

12

Fe2+ Fe3+
Fe3+ Fe2+

Self-Exchange Electron Transfer Reaction

(ΔGo =  0)

Fe2+ +  Fe3+ Fe3+ +  Fe2+

Fe3+Fe2+
Fe3+ Fe2+

Reaction

Fe2+ +  Fe3+ Fe3+ +  Fe2+

Fe3+
Fe2+

Forward Reaction



Prof. Amilcar Machulek Junior (IQ/USP)

13

Fe3+Fe2+
Fe3+ Fe2+

Reaction

Fe2+ +  Fe3+ Fe3+ +  Fe2+

Fe3+Fe2+

Inverse Reaction

Principle of Microscopic Reversibility
Lowest Free Energy Path in Forward Direction is Also
the Lowest Free Energy Path in the Reverse Direction
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Principle of Microscopic Reversibility
Lowest Free Energy Path in Forward Direction is Also
the Lowest Free Energy Path in the Reverse Direction

Fe3+Fe2+
Fe3+ Fe2+

Fe2+ +  Fe3+ Fe3+ +  Fe2+

Fe2.5+Fe2.5+

Reaction Profile that obeys the Hammond Postulate and
Microscopic Reversibility!
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Marcus Theory of Electron Transfer

Electron Transfer in a Donor-Acceptor Pair DA:

DA   →   D+A-

The rate of electron transfer in DA depends on:
The standard Gibbs free energy change of the reaction;

The energy associated with molecular rearrangements 

(reorganization of solvation shell and ligands).  

λλ

0 10

The (Solvent/Ligand) Reorganization Free Energy (λ)

ΔG‡
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0
0 1

ΔGo
xy

The Marcus Procedure
X   +   Y’             X’  +  Y           λxy = (λxx + λyy)/2 = 4ΔGxy

‡o

ΔGo
xy <  0

G

x‡

ΔGxy
‡ =  (λxy/4)[1+ ΔGo

xy/λxy]2

The Free Energy of Activation is a Function of the Overall Free Energy Change for the Reaction!! 

Diffusional Encounter:
D*  +  A (DA)*

Electron Transfer:
(DA)*  → D+A-

Diffusional Separation:
D+A- D+ +  A-

Back Electron Transfer (to Ground State):
D+A- → DA

Excited State Electron Transfer in Homogeneous 
Systems
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Diffusional Encounter:
D*  +  A (DA)*

Electron Transfer:
(DA)*  → D+A-

Diffusional Separation:
D+A- D+ +  A-

Excited State Electron Transfer in Homogeneous 
Systems

Electrochemiluminescence

Diffusional Encounter:
D*  +  A (DA)*

Electron Transfer:
(DA)*  → D+A-

Diffusional Separation:
D+A- D+ +  A-

Excited State Electron Transfer in Homogeneous 
Systems

Rehm – Weller Kinetic Model

kdif / k-dif

ket / k-et

ksep

kq =                             kdif
[1  +  (k-dif /ket)  +  (k-dif/ksep)(k-et/ket)]
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Excited State Electron Transfer in Homogeneous 
Systems

Rehm – Weller Kinetic Model

kq =                             kdif
[1  +  (k-dif /ket)  +  (k-dif/ksep)(k-et/ket)]

A exp(ΔG‡
et/RT) exp(ΔGo

et/RT)

kq =                             2 x 1010 M-1s-1

{1  +  0.25 [exp(ΔG‡
et/RT) + exp(ΔGo

et/RT)]}

In Acetonitrile:

D*A

D   +    AD   +    A
DA

D+.A-.

D+. +     A-.
wp

E½
ox - E½

red

ΔGo
et

wr

E*

ΔGo
et =  23.06(E½

ox - E½
red) - E* + (wp-wr)

Calculating the Free Energy Change for Electron Transfer
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Excited State Electron Transfer in Homogeneous 
Systems

Rehm – Weller Kinetic Model

kq =                             kdif
[1  +  (k-dif /ket)  +  (k-dif/ksep)(k-et/ket)]

A exp(ΔG‡
et/RT) exp(ΔGo

et/RT)

kq =                             2 x 1010 M-1s-1

{1  +  0.25 [exp(ΔG‡
et/RT) + exp(ΔGo

et/RT)]}

In Acetonitrile:

Dynamics of electron transfer

The rate of electron transfer depends on:
(1) the distance between the electron donor and acceptor;

(2) standard Gibbs free energy change of the reaction;

(3) the energy associated with molecular rearrangements. 

Excited State Redox Potentials and Rate Constants for 
Outer Sphere Electron Transfer in Solution can be Estimated

via the Rehm-Weller Model when the Appropriate Redox 
Parameters are Available or can be Estimated.
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Reações Fotoquímicas

Reações Fotoquímicas

R         R*                     R        R*

R*         Produto(s)        R*         I

I + Y         Produto(s)     

a) Reação Fotoquímica b) Reação Foto-iniciada
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Reações Fotoquímicas


