CORRELATIONS

α Function for a Series of Hydrocarbons to Peng–Robinson and van der Waals Equations of State

Osvaldo Chiavone-Filho,*† Pedro G. Amaral Filho,† Douglas N. Silva,† and Luiz R. Terron‡

Department of Chemical Engineering (PPGEQ), Federal University of Rio Grande do Norte (UFRN), Campus Universitário, Lagoa Nova, Natal, 59072-970 Rio Grande do Norte, Brazil, and Department of Chemical Engineering, Polytechnical School, University of São Paulo (USP), Cidade Universitária, São Paulo, 05508-900 São Paulo, Brazil

This paper reports estimated coefficients for the α function based on vapor pressure data to a series of 438 components, mainly hydrocarbons, for both van der Waals and Peng–Robinson equations of state (EoS). The α function utilized for the attractive term is the one proposed by Mathias and Copeman in 1983, and it improves the cubic EoS calculations. Accurate vapor-pressure correlations and critical data required for the estimation of the constants were retrieved from two databases, i.e., AIChE DIPPR and the Reid et al. (The Properties of Gases and Liquids; McGraw-Hill: New York, 1987) reference book. The method of calculation is described, and the constants are tested with respect of their representation of thermodynamic properties, mainly in terms of the vapor-pressure deviations. The behavior of density and enthalpy EoS predictions is also evaluated. The estimated coefficients for the α function are reported in the Supporting Information and may be applied as a data bank in a simulator, providing more accurate thermodynamic property calculations in the recommended temperature range, as demonstrated.

Introduction

Cubic equations of state (EoS) are characterized by their capability and simplicity in calculating thermodynamic properties, i.e., phase equilibrium, density, and enthalpy. Having in sight the great potential of applicability of the cubic EoS, many researchers have concentrated their efforts on improving the property representations using these equations.1 This paper reports coefficients for the α expression, which improves significantly vapor-pressure calculations for both van der Waals (vdW) and Peng–Robinson (PR) EoS. The vapor pressure is a fundamental property, and it is a good indicator of application of the cubic EoS, inclusive for other thermodynamic properties, in the recommended temperature range.

Thermodynamic Models

The first cubic EoS was proposed by van der Waals in 1873.2 Later, many other modifications were presented, and one usually applied is the PR equation.3 The vdW and PR EoS are represented by eqs 1 and 2, respectively.

\[
P = \frac{RT}{v-b} - \frac{a}{v^2} \quad (1)
\]

\[
P = \frac{RT}{v-b} - \frac{a}{v(v+b)+b(v-b)} \quad (2)
\]

The attractive and repulsive parameters, a and b, respectively, are obtained from the two restrictions of the critical point. They are shown by eqs 3 and 4 for the two EoS.

\[
a_{vdW} = 0.421875 \frac{RT_c^2}{P_c} \alpha; \quad b_{vdW} = 0.125 \frac{RT_c}{P_c} \quad (3)
\]

\[
a_{PR} = 0.45724 \frac{RT_c^2}{P_c} \alpha; \quad b_{PR} = 0.07780 \frac{RT_c}{P_c} \quad (4)
\]

To improve the vapor-pressure representation, many authors presented different expressions for α to calculate the attractive parameter.4–11 In this work, the Mathias and Copeman4 correlation has been used (see eq 5), which is an expansion of the Soave term.

\[
\alpha = [1 + C_1(1 - \sqrt{T_r}) + C_2(1 - \sqrt{T_r})^2 + C_3(1 - \sqrt{T_r})^3]^2; \quad T_r = T/T_c \quad (5)
\]

Methods of Calculation

The desired C1, C2, and C3 coefficients were determined using a computational program, which applies a
modified Marquardt method for nonlinear least-squares fitting. The objective function (OF) for minimization was defined in terms of the relative vapor-pressure error (see eq 6).

\[
\text{OF} = \text{MIN} = \sum_{i=1}^{N} \left(\frac{P_{\text{calcd},i} - P_{\text{exptl},i}}{P_{\text{exptl},i}} \right)^2
\]

The pseudoexperimental values for vapor pressure as a function of temperature were generated, using the correlations given by Reid et al. (1987) and AIChE DIPPR data compilations, with 200 points for each component. It would have been better to use reliable experimental data instead of the vapor-pressure correlation. However, it may be regarded that these databases selected the most reliable data for every component evaluated. Therefore, it is reasonable to assume that the correlations used represent the experimental data within experimental error, for the stated temperature range.

Figure 1 illustrates the iterative algorithm presented by Knudsen for calculation of the constants \(C_1, C_2, \text{ and } C_3\). The program called VAPP that applies this algorithm was modified in this work for the vdW and PR EoS. It is noteworthy that, at each temperature and set of constants, the program calculates the vapor pressure using the isofugacity criterion.

Results and Discussion

The results of all estimated coefficients for the vdW and PR EoS to the selected hydrocarbons are presented in the Supporting Information, together with the critical properties used.

For each set of coefficients determined, i.e., for each component, we evaluated the deviations in order to give the quality of representation. The mean (AAD) and maximum deviations (MD) used are defined by eqs 7 and 8. On the basis of the AAD, we made the global average for the 438 components, and the results are 0.32% for vdW and 0.28% for PR. In terms of the MD, the global averages are 0.90% for vdW and 0.81% for PR. As we can observe, both EoS presented the same good quality of representation, and these pictures may be seen graphically in Figures 2 and 3.

\[
\text{AAD} = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{P_{\text{exptl},i} - P_{\text{calcd},i}}{P_{\text{exptl},i}} \right|
\]

\[
\text{MD} = \left(\frac{|P_{\text{exptl}} - P_{\text{calcd}}|}{P_{\text{exptl}}} \right) \times 100
\]

To ensure that the constants used for the vapor-pressure correlations are coherent and precise, the deviation at the normal boiling point (DBP) for each component was evaluated (see eq 9). The global mean
deviation at the normal boiling point for the studied components is 0.50%.

\[
DBP = \frac{|P_{\text{calc}}(T_b) - 101325|}{101325} \times 100
\]

(9)

Table 1 demonstrates the contribution of the \(\alpha \) function for the representation of the vapor-pressure data of a sample of compounds, by comparing the deviations between the vdW-C\(_1\)C\(_2\)C\(_3\) EoS and the original PR. As we could expect, the deviations for the original PR EoS are especially higher than those for vdW-C\(_1\)C\(_2\)C\(_3\) for compounds where polarity and molecular weight are increased. It should be cited that the expression for C\(_1\) as function of the acentric factor, proposed by Watson et al.,\(^{19}\) was used for the original PR EoS, which is more accurate for hydrocarbons.

Table 1. Comparison of the Representation of the Vapor-Pressure Data\(^a\) Using the Mathias and Copeman Attractive Term for the vdW and Original PR EoS

<table>
<thead>
<tr>
<th>Component</th>
<th>Range of (T) (K)</th>
<th>PR-C(_1) (original)</th>
<th>vdw-C(_1)C(_2)C(_3) (this work)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AAD (%)</td>
<td>MD (%)</td>
<td>AAD (%)</td>
</tr>
<tr>
<td>water</td>
<td>273–643</td>
<td>6.56</td>
<td>29.09</td>
</tr>
<tr>
<td>oxygen</td>
<td>55–153</td>
<td>2.67</td>
<td>5.45</td>
</tr>
<tr>
<td>nitrogen</td>
<td>64–125</td>
<td>1.77</td>
<td>3.49</td>
</tr>
<tr>
<td>hydrogen sulfide</td>
<td>273–342</td>
<td>1.53</td>
<td>2.49</td>
</tr>
<tr>
<td>carbon monoxide</td>
<td>68–132</td>
<td>1.37</td>
<td>2.44</td>
</tr>
<tr>
<td>carbon dioxide</td>
<td>216–303</td>
<td>1.61</td>
<td>2.85</td>
</tr>
<tr>
<td>methane</td>
<td>91–189</td>
<td>2.32</td>
<td>7.15</td>
</tr>
<tr>
<td>ethane</td>
<td>91–302</td>
<td>2.17</td>
<td>3.96</td>
</tr>
<tr>
<td>propane</td>
<td>117–366</td>
<td>2.33</td>
<td>14.01</td>
</tr>
<tr>
<td>butane</td>
<td>138–420</td>
<td>2.27</td>
<td>11.09</td>
</tr>
<tr>
<td>isobutane</td>
<td>135–405</td>
<td>3.01</td>
<td>24.55</td>
</tr>
<tr>
<td>isopentane</td>
<td>155–457</td>
<td>2.26</td>
<td>11.54</td>
</tr>
<tr>
<td>pentane</td>
<td>160–468</td>
<td>2.86</td>
<td>21.38</td>
</tr>
<tr>
<td>3-methylpyridine</td>
<td>255–644</td>
<td>5.80</td>
<td>39.61</td>
</tr>
<tr>
<td>3,4-xylene</td>
<td>339–724</td>
<td>4.45</td>
<td>9.93</td>
</tr>
<tr>
<td>decane</td>
<td>243–613</td>
<td>2.24</td>
<td>15.63</td>
</tr>
<tr>
<td>pentadecane</td>
<td>305–705</td>
<td>3.05</td>
<td>20.38</td>
</tr>
<tr>
<td>eicosane</td>
<td>360–760</td>
<td>1.95</td>
<td>11.36</td>
</tr>
<tr>
<td>pentacosane</td>
<td>400–787</td>
<td>6.00</td>
<td>9.72</td>
</tr>
<tr>
<td>triacontane</td>
<td>440–840</td>
<td>11.37</td>
<td>18.26</td>
</tr>
<tr>
<td>dotriacontane</td>
<td>455–845</td>
<td>13.95</td>
<td>20.87</td>
</tr>
<tr>
<td>hexatriacontane</td>
<td>474–860</td>
<td>23.30</td>
<td>35.24</td>
</tr>
</tbody>
</table>

\(^a\) Data obtained from the AIChE DIPPR compilation.\(^{14}\)

The representation of liquid densities by cubic EoS is one limitation, and thereby it is important to verify that using the estimated coefficients (C\(_1\)C\(_2\)C\(_3\)) for a series of n-alkanes presents a uniform behavior (see Figure 4). Furthermore, a correction of Pénéloxe type\(^{20}\) using a group contribution is found to be applicable for the series of n-alkanes, in which the dependence was linear with respect to the functional groups and quadratic in terms of the reduced temperature.

Heat of vaporization predictions were made, and it could be observed that the representation using the estimated \(\alpha \) coefficients is also improved. The estimated constants were also successfully applied in a simulator for a unit of natural gas absorption, where an enthalpy balance is performed, requiring the derivatives of the \(\alpha \) term with respect to the temperature.\(^{21}\)
It must be emphasized that the estimated coefficients \((C_1C_2C_3)\) are useful for the recommended temperature range and subcritical temperatures. To illustrate what can happen on extrapolation at lower and higher temperatures than the stated temperature range used in the estimation procedure, pentane was taken as an example, together with \(vdW\) \(EoS\). Two sets of coefficients were estimated at low \((195-255 K)\) and high \((368-468 K)\) temperature ranges with the proposed procedure, resulting in precise fittings, as usual. Afterward, these estimated coefficients were used for representation of the complete range \((195-468 K)\) studied to evaluate the behavior on extrapolation in terms of vapor-pressure deviations (see Figure 5). It should be pointed out that the extrapolation must not be made, and it is even more deficient at lower temperatures, because the critical point is used as a restriction in the \(EoS\).

Conclusions

The Mathias and Copeman constants \(C_1, C_2,\) and \(C_3\) were obtained in a series of 438 hydrocarbons for both \(vdW\) and \(PR\) \(EoS\). It is demonstrated that representation of the vapor pressure is significantly improved and precise in the temperature range of the experimental data, inclusive at low pressures.

The use of \(C_2\) and \(C_3\) is clearly justified for compounds presenting polarity and high molecular weight. However, for low pressures the complete \(\alpha\) term is also significantly useful for apolar compounds. Good vapor-pressure representation of pure compounds reflects directly on the prediction of mixtures.

Particularly for the \(vdW\) \(EoS\), the capability of the vapor–liquid equilibrium calculation is being extended with the implementation of the \(\alpha\) function on the same level as \(PR\), even though the last presents a better mathematical flexibility. Although the repulsive term of the \(vdW\)-type \(EoS\) is not correct, these equations are normally used in chemistry and engineering applications, because of their simplicity and efficiency.22

The estimated constants are available at the Supporting Information and may be applied in calculation programs for thermodynamic properties as well as in simulators, especially for chemical processes and petroleum reservoirs.

Acknowledgment

We thank Professor Peter Rasmussen and Professor Aage Fredenslund (in memoriam) of the Technical University of Denmark for the use of IVC-SEP routines. Brazilian financial support provided by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo), and ANP (Agência Nacional do Petróleo) is also gratefully acknowledged.

Supporting Information Available: Table of constants of the Mathias and Copeman attractive term for \(vdW\) and \(PR\) \(EoS\) to a series of 438 components, mainly hydrocarbons. This material is available free of charge via the Internet at http://pubs.acs.org.

Glossary

\[A = \text{nondimensional attractive parameter, } aP/(RT)^2 \]
\[B = \text{nondimensional repulsive parameter, } bP/RT \]
\[a = \text{attractive parameter of the } EoS \]
\[b = \text{repulsive parameter of the } EoS \]
\[C_1, C_2, C_3 = \text{Mathias and Copeman constants for the } \alpha \text{ term} \]
\[N = \text{number of data points} \]
\[OF = \text{objective function} \]
\[P = \text{pressure (Pa)} \]
\[R = \text{gas constant } [Pa \cdot m^3/(mol \cdot K)] \]
\[T = \text{temperature (K)} \]
\[t = \text{molar volume translation } (m^3/mol) \]
\[v = \text{molar volume } (m^3/mol) \]
\[Z = \text{compressibility factor} \]

Greek Letters

\[\alpha = \text{function of the reduced temperature, defined in eq 5} \]
\[\Delta = \text{variation} \]

Superscripts and Subscripts

\[\text{calc} = \text{calculated} \]
\[\text{exp} = \text{experimental} \]
\[l, v = \text{liquid, vapor} \]
\[r = \text{reduced property} \]
\[^\prime = \text{derivative with respect to pressure (the Newton method)} \]

Literature Cited

Received for review December 30, 2000
Revised manuscript received September 5, 2001
Accepted September 12, 2001

IE001134O