BIOLOGICAL ACTIVITY OF Brassica oleracea var capitata EXTRACTS OBTAINED BY SC-CO$_2$

Valéria Dal Prá$^{(1)*}$, Fernanda O. Lima$^{(2)}$, Géssica D. da Silveira$^{(2)}$, Vinícius Mossi$^{(3)}$, Marcus V. Três$^{(3)}$, Camilo A. Carvalho$^{(4)}$, Marcio A. Mazutti$^{(5)}$, Leandro M. de Carvalho$^{(1)}$, Paulo C. Nascimento$^{(2)}$ and Marcelo B. da Rosa$^{(1)}$

(1) Graduate Program of Pharmaceutical Science, Federal University of Santa Maria
Av. Roraima, 1000, Santa Maria, RS, 97105-900, BRAZIL

(2) Graduate Program of Chemistry, Federal University of Santa Maria
Av. Roraima, 1000, Santa Maria, RS, 97105-900, BRAZIL

(3) Department of Food Engineering, URI – Campus de Erechim
Av. Sete de Setembro, 1621, Erechim, RS, 99700-000, BRAZIL

(4) Department of General Biology, Federal University of Viçosa
Av. Peter Henry Rolfs, s/n, Viçosa, 36570-000, BRAZIL

(5) Department of Chemical Engineering - Federal University of Santa Maria
Av. Roraima, 1000, Santa Maria, RS, 97105-900, BRAZIL

Brassica oleracea var capitata, known as white cabbage, has been widely studied due to its pharmacological properties. Based on these aspects, this work is focused on the supercritical CO$_2$ (SC-CO$_2$) extraction, characterization and evaluation of biological activity of white cabbage, since, at the best of our knowledge, there is no works focusing on SC-CO$_2$ extraction for this plant. The experiments were performed in a laboratory-scale unit, which consists of a CO$_2$ reservoir, two thermostatic baths, a syringe pump and a jacketed extraction vessel. Amounts of around 20 g of dried white cabbage leaves were fed into the extraction vessel and extractions carried out for 2 hours using a constant mass CO$_2$ flow rate of 2 g.min$^{-1}$. A central composite design was carried out to evaluate the effects of temperature (20 to 60°C) and pressure (100 to 250°C). Results showed that the extraction variables affect the extraction yield, which ranged from 0.1 to 0.45 wt%, being the highest value obtained at 60°C and 250 bar. The major compounds indentified in the extracts were hexadodecanoic acid and cyclopropane octanoic acid. From the antioxidant activities of the extract, it was seen that the SC-CO$_2$ white cabbage extracts inhibited 78% and 59% of the antioxidant action of superoxide and DPPH radicals, respectively. Antimicrobial tests demonstrated that SC-CO$_2$ extracts had activity against Staphylococcus aureus. The results obtained in this work are promising for the development of a phytotherapeutic drug, since the SC-CO$_2$ extracts of white cabbage presented a significant antioxidant and antimicrobial activities.

Keywords: White cabbage, supercritical CO$_2$ extraction, biological activity.

*Corresponding author: vdpalpra@gmail.com